Abstract

A coherent CO2 laser communication system that yields high-quality voice communications between a transmit–receive station and a remote site (24 km) where modulable retroreflectors are located was developed. The potential range capability of this system was 80 km, and the system was improved by 20 dB in the signal-to-noise ratio over a direct-detection system.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968).
    [CrossRef]
  2. H. W. Mocker, “A 10.6-μ optical heterodyne communication system,” Appl. Opt. 8, 677–684 (1969).
    [CrossRef] [PubMed]
  3. J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
    [CrossRef]
  4. A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
    [CrossRef]
  5. J. E. A. Selby, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 μm: computer code lowtran 3,” Environ. Res. Paper AFCRL-TR-75-0255 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1975).
  6. A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969).
    [CrossRef]
  7. M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980).
    [CrossRef]
  8. A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).
  9. B. Furch, A. L. Scholtz, W. R. Leeb, “Isolation and frequency conversion properties of acousto-optic modulators,” Appl. Opt. 21, 2344–2347 (1982).
    [CrossRef] [PubMed]
  10. L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182–195 (1986).
    [CrossRef]
  11. H. W. Mocker, “Pressure and current-dependent shifts in the frequency of oscillation of the CO2 laser,” Appl. Phys. Lett. 12, 20–23 (1968).
    [CrossRef]
  12. P. K. L. Yin, “Studies on CO2 isotope molecules and atmospheric transmission of 12C18O2 laser radiation,” Appl. Opt. 8, 997–1006. (1969).
    [CrossRef] [PubMed]
  13. R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25, 304–306 (1974).
    [CrossRef]
  14. S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

1987 (1)

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

1986 (1)

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182–195 (1986).
[CrossRef]

1982 (1)

1980 (1)

M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980).
[CrossRef]

1978 (1)

S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

1977 (1)

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

1974 (1)

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25, 304–306 (1974).
[CrossRef]

1969 (3)

1968 (2)

F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968).
[CrossRef]

H. W. Mocker, “Pressure and current-dependent shifts in the frequency of oscillation of the CO2 laser,” Appl. Phys. Lett. 12, 20–23 (1968).
[CrossRef]

Abrams, R. L.

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25, 304–306 (1974).
[CrossRef]

Burbank, D.

A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).

Degnan, J. J.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Early, V.

A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969).
[CrossRef]

Flatscher, R.

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

Flattau, T.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Furch, B.

Gonchukov, S. A.

S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

Goodwin, F. E.

F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968).
[CrossRef]

Goodwin, F. G.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Henderson, D. M.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Johnson, E. H.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Jurisson, J.

A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).

Karnilov, S. T.

S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

Kazovsky, L.

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182–195 (1986).
[CrossRef]

Khalafalla, A. S.

A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).

Klein, M. B.

M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980).
[CrossRef]

Landman, A.

A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969).
[CrossRef]

Leeb, W. R.

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

B. Furch, A. L. Scholtz, W. R. Leeb, “Isolation and frequency conversion properties of acousto-optic modulators,” Appl. Opt. 21, 2344–2347 (1982).
[CrossRef] [PubMed]

Marantz, H.

A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969).
[CrossRef]

McAvoy, N.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

McClatchey, R. A.

J. E. A. Selby, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 μm: computer code lowtran 3,” Environ. Res. Paper AFCRL-TR-75-0255 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1975).

McElroy, J. H.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Mocker, H. W.

H. W. Mocker, “A 10.6-μ optical heterodyne communication system,” Appl. Opt. 8, 677–684 (1969).
[CrossRef] [PubMed]

H. W. Mocker, “Pressure and current-dependent shifts in the frequency of oscillation of the CO2 laser,” Appl. Phys. Lett. 12, 20–23 (1968).
[CrossRef]

Nussmeier, T. A.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968).
[CrossRef]

Peyton, B. J.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Philipp, H. K.

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

Protsenko, E. D.

S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

Scholtz, A. L.

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

B. Furch, A. L. Scholtz, W. R. Leeb, “Isolation and frequency conversion properties of acousto-optic modulators,” Appl. Opt. 21, 2344–2347 (1982).
[CrossRef] [PubMed]

Schuck, J.

A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).

Selby, J. E. A.

J. E. A. Selby, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 μm: computer code lowtran 3,” Environ. Res. Paper AFCRL-TR-75-0255 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1975).

Sipman, R. H.

M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980).
[CrossRef]

Stokes, L. S.

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Yin, P. K. L.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25, 304–306 (1974).
[CrossRef]

H. W. Mocker, “Pressure and current-dependent shifts in the frequency of oscillation of the CO2 laser,” Appl. Phys. Lett. 12, 20–23 (1968).
[CrossRef]

A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969).
[CrossRef]

IEEE J. Quantum. Electron. (1)

F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968).
[CrossRef]

J. Appl. Phys. (1)

M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980).
[CrossRef]

J. Lightwave Technol. (2)

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182–195 (1986).
[CrossRef]

A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987).
[CrossRef]

Proc. IEEE (1)

J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

Other (2)

J. E. A. Selby, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 μm: computer code lowtran 3,” Environ. Res. Paper AFCRL-TR-75-0255 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1975).

A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Performance characteristics of the coherent CO2 laser communication system: A, quantum-noise limit; B, actual performance at night; C, actual performance during the day.

Fig. 2
Fig. 2

Performance characteristics versus range.

Fig. 3
Fig. 3

SNR as a function of range (for six different atmospheric-attenuation conditions).

Fig. 4
Fig. 4

Optical layout of the T/R system: A, anode; C, cathode; BS1, BS2, beam splitters; M1, M2, M4, mirrors.

Fig. 5
Fig. 5

Frequency instabilities as a function of observation time.

Fig. 6
Fig. 6

Three-dimensional sketch of the active MRR with a voice-coil-deflected membrane.

Fig. 7
Fig. 7

Relative frequency response of the unpowered (pellicle) and the powered (voice-coil) modulator devices.

Fig. 8
Fig. 8

Block diagram of optical- and electronic-mixing stages and information retrieval. AGC, automatic gain control.

Fig. 9
Fig. 9

CO2 laser homodyne communication system.

Fig. 10
Fig. 10

T/R system and processing scheme. PZT, piezoelectric transducer; LO, local oscillator; LNA, low-noise microwave amplifier; BPF, bandpass filter; LPF, low-pass filter.

Tables (5)

Tables Icon

Table 1 Parameters of the T/R System and Corner Reflector

Tables Icon

Table 2 Attenuation Data for Six Different Atmospheres

Tables Icon

Table 3 Output Characteristics of a Folded Waveguide Laser of 44-cm Laser Length (77.4-cm Gain Length)

Tables Icon

Table 4 Comparison of the Homodyne Communication System with a Direct-Detection System

Tables Icon

Table 5 Pointing-System Requirements

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR = η P s / 2 h ν B ,
P s = 16 P L η T η R A r A c R c exp ( 2 α R ) π 2 θ T 2 θ C 2 R 4 .

Metrics