Abstract

A novel optical interconnection is introduced for a multistage optical switching network that uses orthogonally polarized data and address information. The network is unique in that the data information is never regenerated and remains in optical form throughout (i.e., it is never converted into electrical information). This has two main consequences: (1) the bandwidth of the data is not restricted by electrical circuit considerations, and (2) the optical interconnections from one stage of the network to the next must be highly efficient. The interconnection meets several goals: high efficiency, preservation of cross polarization of data and address, low cross talk between polarizations, good manufacturability, resistance to misalignment caused by thermal expansion, and absence of significant aberrations. In addition, sychronization of the signals is maintained, as the optical path lengths for all routes through the system are equal.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. S. Parker, “Notes on shuffle/exchange-type switching networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
    [CrossRef]
  2. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153 (1971).
    [CrossRef]
  3. R. B. Jenkins, B. D. Clymer, “An acousto-optic comparison switch for optical switching networks with analog addressing techiques,” Appl. Opt. 31, 5433–5463 (1991).
  4. L. McAdams, R. McRuer, J. Goodman, “Liquid crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
    [CrossRef] [PubMed]
  5. K. E. Batcher, “Sorting networks and their applications,” in Proceedings AFIPS 1968 Spring Joint Computer Conference (American Federation of Information Processing, Washington, D.C., 1968), Vol. 32, pp. 307–314.
    [CrossRef]
  6. D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-25, 1145–1155 (1975).
    [CrossRef]
  7. S. Knauer, J. H. O’Neill, A. Huang, “Self-routing switching networks,” in Principles of CMOS VLSI Design, N. H. E. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1985), pp. 428–437.
  8. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, “Optical crossbar networks,” Computer (June1987), p. 51.
  9. D. Butzer, B. Clymer, “A highly efficient interconnect for use with a multistage optical switching network,” in Optoelectronic Interconnects, R. T. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1849, 153–158 (1993).
  10. “MacBEEP offers desktop system for binary optics applications,” in Optoelectronic Reports, November 1992 (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992), p. 11.
  11. M. Feldman, C. Guest, “Computer-generated holographic optical elements for optical interconnection of very-large-scale-integrated circuits,” Appl. Opt. 26, 4377–4382 (1987).
    [CrossRef] [PubMed]
  12. T. Gaylord, G. Moharam, “Analysis and applications of optical diffraction by gratings,” in Proc. IEEE 73, 894–905 (1985).
    [CrossRef]
  13. S. Kawai, “Free-space multistage optical interconnection networks using micro lens arrays,” J. Lightwave Technol. 9, 1774–1777 (1991).
    [CrossRef]
  14. J. Skinner, C. H. R. Lane, “A low-cross-talk micro-optic liquid-crystal cell,” IEEE J. Select. Areas Commun. 6, 1178–1185 (1988).
    [CrossRef]
  15. Goodfellow Corporation, Metals and Materials For Research and Industry (Goodfellow Corporation, Malvern, Pa., 1992).
  16. M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, Oxford, 1980).
  17. J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  18. D. S. Wise, “Compact layout of banyan/FFT networks,” in VLSI Systems and Computations, H. T. Kung, B. Sproull, G. Steele, eds. (Computer Science Press, Rockville, Md., 1981), pp. 186–195.
    [CrossRef]
  19. C.-L. Wu, “On a class of multistage interconnect networks,” IEEE Trans. Comput. C-29, 694–702 (1980).
    [CrossRef]

1991 (2)

R. B. Jenkins, B. D. Clymer, “An acousto-optic comparison switch for optical switching networks with analog addressing techiques,” Appl. Opt. 31, 5433–5463 (1991).

S. Kawai, “Free-space multistage optical interconnection networks using micro lens arrays,” J. Lightwave Technol. 9, 1774–1777 (1991).
[CrossRef]

1990 (1)

1988 (1)

J. Skinner, C. H. R. Lane, “A low-cross-talk micro-optic liquid-crystal cell,” IEEE J. Select. Areas Commun. 6, 1178–1185 (1988).
[CrossRef]

1987 (2)

1985 (1)

T. Gaylord, G. Moharam, “Analysis and applications of optical diffraction by gratings,” in Proc. IEEE 73, 894–905 (1985).
[CrossRef]

1980 (2)

C.-L. Wu, “On a class of multistage interconnect networks,” IEEE Trans. Comput. C-29, 694–702 (1980).
[CrossRef]

J. D. S. Parker, “Notes on shuffle/exchange-type switching networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

1975 (1)

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-25, 1145–1155 (1975).
[CrossRef]

1971 (1)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153 (1971).
[CrossRef]

Batcher, K. E.

K. E. Batcher, “Sorting networks and their applications,” in Proceedings AFIPS 1968 Spring Joint Computer Conference (American Federation of Information Processing, Washington, D.C., 1968), Vol. 32, pp. 307–314.
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, Oxford, 1980).

Butzer, D.

D. Butzer, B. Clymer, “A highly efficient interconnect for use with a multistage optical switching network,” in Optoelectronic Interconnects, R. T. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1849, 153–158 (1993).

Clymer, B.

D. Butzer, B. Clymer, “A highly efficient interconnect for use with a multistage optical switching network,” in Optoelectronic Interconnects, R. T. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1849, 153–158 (1993).

Clymer, B. D.

R. B. Jenkins, B. D. Clymer, “An acousto-optic comparison switch for optical switching networks with analog addressing techiques,” Appl. Opt. 31, 5433–5463 (1991).

Feldman, M.

Gaylord, T.

T. Gaylord, G. Moharam, “Analysis and applications of optical diffraction by gratings,” in Proc. IEEE 73, 894–905 (1985).
[CrossRef]

Goodman, J.

Guest, C.

Huang, A.

S. Knauer, J. H. O’Neill, A. Huang, “Self-routing switching networks,” in Principles of CMOS VLSI Design, N. H. E. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1985), pp. 428–437.

Jenkins, B. K.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, “Optical crossbar networks,” Computer (June1987), p. 51.

Jenkins, R. B.

R. B. Jenkins, B. D. Clymer, “An acousto-optic comparison switch for optical switching networks with analog addressing techiques,” Appl. Opt. 31, 5433–5463 (1991).

Kawai, S.

S. Kawai, “Free-space multistage optical interconnection networks using micro lens arrays,” J. Lightwave Technol. 9, 1774–1777 (1991).
[CrossRef]

Knauer, S.

S. Knauer, J. H. O’Neill, A. Huang, “Self-routing switching networks,” in Principles of CMOS VLSI Design, N. H. E. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1985), pp. 428–437.

Lane, C. H. R.

J. Skinner, C. H. R. Lane, “A low-cross-talk micro-optic liquid-crystal cell,” IEEE J. Select. Areas Commun. 6, 1178–1185 (1988).
[CrossRef]

Lawrie, D. H.

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-25, 1145–1155 (1975).
[CrossRef]

McAdams, L.

McRuer, R.

Moharam, G.

T. Gaylord, G. Moharam, “Analysis and applications of optical diffraction by gratings,” in Proc. IEEE 73, 894–905 (1985).
[CrossRef]

O’Neill, J. H.

S. Knauer, J. H. O’Neill, A. Huang, “Self-routing switching networks,” in Principles of CMOS VLSI Design, N. H. E. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1985), pp. 428–437.

Parker, J. D. S.

J. D. S. Parker, “Notes on shuffle/exchange-type switching networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

Raghavendra, C. S.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, “Optical crossbar networks,” Computer (June1987), p. 51.

Sawchuk, A. A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, “Optical crossbar networks,” Computer (June1987), p. 51.

Skinner, J.

J. Skinner, C. H. R. Lane, “A low-cross-talk micro-optic liquid-crystal cell,” IEEE J. Select. Areas Commun. 6, 1178–1185 (1988).
[CrossRef]

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153 (1971).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Wise, D. S.

D. S. Wise, “Compact layout of banyan/FFT networks,” in VLSI Systems and Computations, H. T. Kung, B. Sproull, G. Steele, eds. (Computer Science Press, Rockville, Md., 1981), pp. 186–195.
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, Oxford, 1980).

Wu, C.-L.

C.-L. Wu, “On a class of multistage interconnect networks,” IEEE Trans. Comput. C-29, 694–702 (1980).
[CrossRef]

Appl. Opt. (3)

Computer (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, “Optical crossbar networks,” Computer (June1987), p. 51.

IEEE J. Select. Areas Commun. (1)

J. Skinner, C. H. R. Lane, “A low-cross-talk micro-optic liquid-crystal cell,” IEEE J. Select. Areas Commun. 6, 1178–1185 (1988).
[CrossRef]

IEEE Trans. Comput. (4)

C.-L. Wu, “On a class of multistage interconnect networks,” IEEE Trans. Comput. C-29, 694–702 (1980).
[CrossRef]

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-25, 1145–1155 (1975).
[CrossRef]

J. D. S. Parker, “Notes on shuffle/exchange-type switching networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153 (1971).
[CrossRef]

J. Lightwave Technol. (1)

S. Kawai, “Free-space multistage optical interconnection networks using micro lens arrays,” J. Lightwave Technol. 9, 1774–1777 (1991).
[CrossRef]

Proc. IEEE (1)

T. Gaylord, G. Moharam, “Analysis and applications of optical diffraction by gratings,” in Proc. IEEE 73, 894–905 (1985).
[CrossRef]

Other (8)

Goodfellow Corporation, Metals and Materials For Research and Industry (Goodfellow Corporation, Malvern, Pa., 1992).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, Oxford, 1980).

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989).

D. S. Wise, “Compact layout of banyan/FFT networks,” in VLSI Systems and Computations, H. T. Kung, B. Sproull, G. Steele, eds. (Computer Science Press, Rockville, Md., 1981), pp. 186–195.
[CrossRef]

K. E. Batcher, “Sorting networks and their applications,” in Proceedings AFIPS 1968 Spring Joint Computer Conference (American Federation of Information Processing, Washington, D.C., 1968), Vol. 32, pp. 307–314.
[CrossRef]

S. Knauer, J. H. O’Neill, A. Huang, “Self-routing switching networks,” in Principles of CMOS VLSI Design, N. H. E. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1985), pp. 428–437.

D. Butzer, B. Clymer, “A highly efficient interconnect for use with a multistage optical switching network,” in Optoelectronic Interconnects, R. T. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1849, 153–158 (1993).

“MacBEEP offers desktop system for binary optics applications,” in Optoelectronic Reports, November 1992 (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992), p. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Graph of the sorting network.

Fig. 2
Fig. 2

Configuration of a typical 2 × 2 switch. The inputs are either passed or swapped.

Fig. 3
Fig. 3

Inputs and outputs for the 2 × 2 switches are not parallel unless extra optics are incorporated. For the acousto-optic switch, θ = 45°. For the ferroelectric liquid-crystal switch, θ ≈ 68°.

Fig. 4
Fig. 4

Configuration of the acousto-optic 2 × 2 switch.

Fig. 5
Fig. 5

Configuration of the ferroelectric liquid-crystal 2 × 2 switch.

Fig. 6
Fig. 6

Novel layout for the sorting network. Each successive stage is shaded differently than the ones before and after it. For example, the switches forming the first stage are all shaded dark gray. The switches forming the second stage are all shaded white. The first six stages form a Batcher network, and the last three form an omega network. The letters are for comparing the network with Fig. 1, and the arrows indicate the same operations as in that figure.

Fig. 7
Fig. 7

Geometry of a total internal reflection at the substrate–air interface. The angle of incidence is θ, and the angle of polarization misalignment is ϕ.

Fig. 8
Fig. 8

Radius of curvature of the wave front is not an adequate measure of its flatness. Instead, the angle γ between the normal to the direction of propagation of the beam and the tangent to the wave fronts at the edge of the beam is used.

Fig. 9
Fig. 9

Distance traveled by light at the edges of a curved wave front through a Fabry–Perot cavity differs from that at the center of the beam. Assuming a spherical wave front, Δl1 and Δl2 give the changes in the electrical distance for a given γ.

Fig. 10
Fig. 10

Two possible placements for a perfect-shuffle connection with [a0 + c0a1, a0 + c0b1, b0 + d0c1, b0 + d0d1]. The next stage can occupy the intersections covered by either the squares or the circles. The horizontal centers of both possible placements occur at the same place. VS and HS for either of the these placements are also shown.

Fig. 11
Fig. 11

Presence of a pair of loops between stages constrains the locations of the centers of the stages for the perfect-shuffle (banyan) interconnections. The switch placement on the left corresponds to the circles in Fig. 10; the placement on the right corresponds to the boxes.

Fig. 12
Fig. 12

(a) 16-input, 14-stage perfect-shuffle network using the new interconnection. Successive stages are indicated by shading. (b) A 16-input crossbar network using the new interconnection.

Tables (2)

Tables Icon

Table 1 Results of Computer Simulation of Cross Talk between Polarizations for the Proposed Eight-Input Interconnection for n = 1.8, θ = 45°, and ϕ = [0°, 1°, 2°, 3°, 4°, 5°]a

Tables Icon

Table 2 Wave-Front Analysis for Various Values of Total System Optical Distance OD, Substrate Thickness, Frequency Light λ, and Minimum Spot Size w0

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

δ = 2 arctan { ( η 2 ) / ( η 1 ) [ ( ν 2 / ν 1 ) 2 - 1 ] sin 2 θ [ ( η 2 / η 1 ) 2 - 1 ] cos θ [ ( ν 2 / ν 1 ) 2 sin 2 θ - 1 ] 1 / 2 } ,
δ = 2 arctan { ( η 2 ) / ( η 1 ) [ ( n 1 / n 2 ) 2 - 1 ] sin 2 θ [ ( η 2 / η 1 ) 2 - 1 ] cos θ [ ( n 1 / n 2 ) 2 sin 2 θ - 1 ] 1 / 2 } ,
[ E E ] = [ cos ( ϕ ) sin ( ϕ ) - sin ( ϕ ) cos ( ϕ ) ] [ E d E a ] = [ E d cos ( ϕ ) + E a sin ( ϕ ) E d [ - sin ( ϕ ) ] + E a cos ( ϕ ) ] ,
[ E E ] = [ E d cos ( ϕ ) exp ( i δ ) + E a sin ( ϕ ) exp ( i δ ) E d [ - sin ( ϕ ) ] + E a cos ( ϕ ) ] .
[ E d E a ] = [ ( [ E d cos ( ϕ ) exp ( i δ ) + E a sin ( ϕ ) exp ( i δ ) ] cos ( ϕ ) + { E d [ - sin ( ϕ ) ] + E a cos ( ϕ ) } [ - sin ( ϕ ) ] ( E d cos ( ϕ ) exp ( i δ ) + E a sin ( ϕ ) exp ( i δ ) ] sin ( ϕ ) + { E d [ - sin ( ϕ ) ] + E a cos ( ϕ ) } cos ( ϕ ) ] .
OD = k n 1 1 sin θ VS VS : HS + m n 3 d .
γ ( z ˜ ) arctan w ( z ˜ ) R ( z ˜ ) .
w 2 ( z ˜ ) = w 0 2 [ 1 + ( z ˜ / z ˜ 0 ) 2 ] .
R ( z ˜ ) = z ˜ [ 1 + ( z ˜ 0 / z ˜ ) 2 ] .
z ˜ 0 = π w 0 2 λ ,
d d z ˜ arctan w ( z ˜ ) R ( z ˜ ) = 1 1 + [ w ( z ˜ ) / R ( z ˜ ) ] 2 R ( z ˜ ) [ d w ( z ˜ ) / d z ˜ ] - w ( z ˜ ) [ d R ( z ˜ ) / d z ˜ ] R 2 ( z ˜ ) ,
R ( z ˜ ) d w ( z ˜ ) d z ˜ - w ( z ˜ ) d R ( z ˜ ) d z ˜ = 0.
w 0 2 ( z ˜ 2 z ˜ 0 2 + z ˜ 0 2 z ˜ 2 + 2 ) = 0.
η = κ 2 κ 2 + ( ½ K Δ θ ) 2 ,
κ = π λ ( M I acoustic 2 ) 1 / 2 .
L e = 2 π l / λ ,
Δ l 1 = l [ cos θ cos ( θ + γ ) - 1 ] .
Δ l 2 = l [ 1 - cos θ cos ( θ - γ ) ] .
| cos θ cos ( θ + γ ) - 1 | > | 1 - cos θ cos ( θ - γ ) | ,
γ = arccos ( 1 l + Δ l 1 cos θ ) - θ .
VS : HS = 1 : ( N / 4 ) ,
VS : HS = 1 : ( N / 4 ) tan θ .

Metrics