Abstract

Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5% NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, cw ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10%. At high Mach numbers there was evidence of rotational freezing of NO.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Rea, R. K. Hanson, “Rapid extended range tuning of single-mode ring dye lasers,” Appl. Opt. 22, 518–520 (1983).
    [CrossRef] [PubMed]
  2. E. C. Rea, S. Salimian, R. K. Hanson, “Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases,” Appl. Opt. 23, 1691–1694 (1984).
    [CrossRef] [PubMed]
  3. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986).
    [CrossRef]
  4. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987).
    [CrossRef] [PubMed]
  5. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
    [CrossRef] [PubMed]
  6. A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH,” Opt. Lett. 15, 706–708 (1990).
    [CrossRef] [PubMed]
  7. D. F. Davidson, A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “CW laser absorption techniques for gasdynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
    [CrossRef] [PubMed]
  8. T. F. Johnston, T. J. Johnston, “Tunable single frequency 215–235 nm radiation by barium borate intracavity doubling in the stilbene-3 ring dye laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FE5.
  9. A. Y. Chang, “Rapid-tuning continuous-wave laser technique applied to nitric oxide spectroscopy and flow measurements,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
    [PubMed]
  10. A. Y. Chang, M. D. Di Rosa, D. F. Davidson, R. K. Hanson, “Rapid-tuning cw laser technique for measurements of gas velocity, temperature, pressure, density and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
    [CrossRef] [PubMed]
  11. M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.
  12. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  13. K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
    [CrossRef]
  14. P. H. Paul, M. P. Lee, R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett. 14, 417–419 (1989).
    [CrossRef] [PubMed]
  15. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
    [PubMed]
  16. T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
    [CrossRef]
  17. W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
    [CrossRef]
  18. G. A. Raiche, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2П states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
    [CrossRef]
  19. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
    [CrossRef]
  20. I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.
  21. A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  22. S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
    [CrossRef]
  23. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 2, p. 43.
  24. R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
    [CrossRef]
  25. L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
    [CrossRef]
  26. J. O. Berg, W. L. Shackleford, “Rotational redistribution effect on saturated laser-induced fluorescence,” Appl. Opt. 18, 2093–2094 (1979).
    [CrossRef] [PubMed]
  27. A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
    [CrossRef]
  28. R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
    [CrossRef]
  29. H. Ashkenas, F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in Rarefied Gasdynamics, J. H. de Leeuw, ed. (Academic, New York1966), Vol. 2, Suppl. 3, pp. 84–105.
  30. R. D. Zucker, Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 4, p. 100;Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 6, pp. 151–155.
  31. B. Hiller, “Combined planar measurements of velocity and pressure fields in compressible gas flows using laser-induced fluorescence,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).
  32. H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984).
    [CrossRef]
  33. P. V. Marrone, “Temperature and density measurements in free jets and shock waves,” Phys. Fluids 10, 521–538 (1967).
    [CrossRef]
  34. H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929).
    [CrossRef]
  35. G. J. Van Wylen, R. E. Sontag, Fundamentals of Classical Thermodynamics, 3rd ed. (Wiley, New York, 1985), Chap. 3, p. 37.
  36. C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970).
    [CrossRef]

1992 (2)

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

1991 (2)

1990 (2)

1989 (1)

1988 (1)

1987 (1)

1986 (2)

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986).
[CrossRef]

1985 (2)

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

1984 (3)

H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984).
[CrossRef]

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

E. C. Rea, S. Salimian, R. K. Hanson, “Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases,” Appl. Opt. 23, 1691–1694 (1984).
[CrossRef] [PubMed]

1983 (2)

E. C. Rea, R. K. Hanson, “Rapid extended range tuning of single-mode ring dye lasers,” Appl. Opt. 22, 518–520 (1983).
[CrossRef] [PubMed]

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

1982 (2)

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

1981 (1)

A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

1979 (1)

1970 (1)

C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970).
[CrossRef]

1967 (1)

P. V. Marrone, “Temperature and density measurements in free jets and shock waves,” Phys. Fluids 10, 521–538 (1967).
[CrossRef]

1949 (1)

R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
[CrossRef]

1929 (1)

H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929).
[CrossRef]

Anezaki, Y.

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Ashkenas, H.

H. Ashkenas, F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in Rarefied Gasdynamics, J. H. de Leeuw, ed. (Academic, New York1966), Vol. 2, Suppl. 3, pp. 84–105.

Battles, B. E.

Berg, J. O.

Chang, A. Y.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “CW laser absorption techniques for gasdynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. Di Rosa, D. F. Davidson, R. K. Hanson, “Rapid-tuning cw laser technique for measurements of gas velocity, temperature, pressure, density and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH,” Opt. Lett. 15, 706–708 (1990).
[CrossRef] [PubMed]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986).
[CrossRef]

M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.

A. Y. Chang, “Rapid-tuning continuous-wave laser technique applied to nitric oxide spectroscopy and flow measurements,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

Cheng, S.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

Cowles, L. M.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Crosley, D. R.

G. A. Raiche, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2П states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Davidson, D. F.

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 2, p. 43.

Di Rosa, M. D.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “CW laser absorption techniques for gasdynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. Di Rosa, D. F. Davidson, R. K. Hanson, “Rapid-tuning cw laser technique for measurements of gas velocity, temperature, pressure, density and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.

Dinerman, C. E.

C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970).
[CrossRef]

Ebata, T.

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Ewing, G. E.

C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970).
[CrossRef]

Fuji, M.

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Giauque, W. F.

H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929).
[CrossRef]

Gross, K. P.

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

Hanson, R. K.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

D. F. Davidson, A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “CW laser absorption techniques for gasdynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. Di Rosa, D. F. Davidson, R. K. Hanson, “Rapid-tuning cw laser technique for measurements of gas velocity, temperature, pressure, density and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH,” Opt. Lett. 15, 706–708 (1990).
[CrossRef] [PubMed]

P. H. Paul, M. P. Lee, R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett. 14, 417–419 (1989).
[CrossRef] [PubMed]

E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

E. C. Rea, S. Salimian, R. K. Hanson, “Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases,” Appl. Opt. 23, 1691–1694 (1984).
[CrossRef] [PubMed]

E. C. Rea, R. K. Hanson, “Rapid extended range tuning of single-mode ring dye lasers,” Appl. Opt. 22, 518–520 (1983).
[CrossRef] [PubMed]

M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

Hilborn, R. C.

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

Hiller, B.

B. Hiller, “Combined planar measurements of velocity and pressure fields in compressible gas flows using laser-induced fluorescence,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).

Ito, M.

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Johnston, H. L.

H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929).
[CrossRef]

Johnston, T. F.

T. F. Johnston, T. J. Johnston, “Tunable single frequency 215–235 nm radiation by barium borate intracavity doubling in the stilbene-3 ring dye laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FE5.

Johnston, T. J.

T. F. Johnston, T. J. Johnston, “Tunable single frequency 215–235 nm radiation by barium borate intracavity doubling in the stilbene-3 ring dye laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FE5.

Kruger, C. H.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Kychakoff, G.

Ladenburg, R.

R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
[CrossRef]

Laux, C. O.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Lee, M. P.

P. H. Paul, M. P. Lee, R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett. 14, 417–419 (1989).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

Mallard, W. G.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Marrone, P. V.

P. V. Marrone, “Temperature and density measurements in free jets and shock waves,” Phys. Fluids 10, 521–538 (1967).
[CrossRef]

McKenzie, R. L.

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

McMillin, B. K.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

Mikami, N.

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Miles, R. B.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

Miller, D. R.

H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984).
[CrossRef]

Miller, J. H.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Murphy, H. R.

H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984).
[CrossRef]

Paul, P. H.

Piper, L. G.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Raiche, G. A.

G. A. Raiche, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2П states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Rea, E. C.

Salimian, S.

Seitzman, J. M.

Shackleford, W. L.

Sherman, F. S.

H. Ashkenas, F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in Rarefied Gasdynamics, J. H. de Leeuw, ed. (Academic, New York1966), Vol. 2, Suppl. 3, pp. 84–105.

Smyth, K. C.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Sobel'man, I. I.

I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.

Sontag, R. E.

G. J. Van Wylen, R. E. Sontag, Fundamentals of Classical Thermodynamics, 3rd ed. (Wiley, New York, 1985), Chap. 3, p. 37.

Timmermann, A.

A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Vainshtein, L. A.

I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.

Van Voorhis, C. C.

R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
[CrossRef]

Van Wylen, G. J.

G. J. Van Wylen, R. E. Sontag, Fundamentals of Classical Thermodynamics, 3rd ed. (Wiley, New York, 1985), Chap. 3, p. 37.

Wallenstein, R.

A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Winckler, J.

R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
[CrossRef]

Yukov, E. A.

I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.

Zimmermann, M.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

Zucker, R. D.

R. D. Zucker, Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 4, p. 100;Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 6, pp. 151–155.

AIAA J. (1)

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

Am. J. Phys. (1)

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

Chem. Phys. (1)

T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929).
[CrossRef]

J. Chem. Phys. (4)

C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

G. A. Raiche, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2П states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

J. Phys. Chem. (1)

H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Opt. Commun. (1)

A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981).
[CrossRef]

Opt. Lett. (3)

Phys. Fluids (1)

P. V. Marrone, “Temperature and density measurements in free jets and shock waves,” Phys. Fluids 10, 521–538 (1967).
[CrossRef]

Phys. Rev. (1)

R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949).
[CrossRef]

Other (10)

H. Ashkenas, F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in Rarefied Gasdynamics, J. H. de Leeuw, ed. (Academic, New York1966), Vol. 2, Suppl. 3, pp. 84–105.

R. D. Zucker, Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 4, p. 100;Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 6, pp. 151–155.

B. Hiller, “Combined planar measurements of velocity and pressure fields in compressible gas flows using laser-induced fluorescence,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 2, p. 43.

T. F. Johnston, T. J. Johnston, “Tunable single frequency 215–235 nm radiation by barium borate intracavity doubling in the stilbene-3 ring dye laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FE5.

A. Y. Chang, “Rapid-tuning continuous-wave laser technique applied to nitric oxide spectroscopy and flow measurements,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
[PubMed]

I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.

M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.

G. J. Van Wylen, R. E. Sontag, Fundamentals of Classical Thermodynamics, 3rd ed. (Wiley, New York, 1985), Chap. 3, p. 37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental schematic for spatially resolved measurements of jet properties. A Doppler-shifted fluorescence trace is recorded simultaneously with the reference-absorption trace. The undoubled laser output is passed through a fixed-length étalon to provide a frequency marker. Det., detector; 'Scopes, oscilloscopes; F.S., field stop; vis, visible.

Fig. 2
Fig. 2

Calculated NO spectrum at 300 K and 0.1 atm showing four candidate intensity pairs suitable for measurements of low temperatures. The abscissa is the vacuum wavelength.

Fig. 3
Fig. 3

Intensity ratio versus temperature for three of the candidate low-temperature intensity pairs. The intensity ratio is defined so as not to exceed unity.

Fig. 4
Fig. 4

Temperature sensitivity of the candidate low-temperature intensity pairs of Fig. 3.

Fig. 5
Fig. 5

Schematic of the continuous-flow jet facility. N2 and NO are metered to yield a 0.5% NO/N2 mixture. Stagnation and test-section pressures are independently variable and monitored continually. The test section is traversable in both the streamwise and cross-stream directions.

Fig. 6
Fig. 6

Raw data trace showing the reference absorption and induced fluorescence traces of Q2 + R12(8), R2(4) (near 226.7 nm) obtained for measurements at x/D = 0.75 along the jet axis. Predicted, isentropic values at this axial location were T = 159 K, P = 0.123 atm, V = 521 m/s, and M = 2.03. The reference cell contained 0.5% NO/N2 at 0.004 atm and 298 K.

Fig. 7
Fig. 7

Reduced single-sweep profile from the data of Fig. 6. Absorption and fluorescence line shapes were fit to Voigt profiles. The flow conditions inferred from these fits are listed. The measured total shift comprised nearly equal Doppler and collision shifts.

Fig. 8
Fig. 8

Comparison of the predicted and measured temperature distributions along the jet axis.

Fig. 9
Fig. 9

Comparison of the predicted and measured pressure distributions along the jet axis.

Fig. 10
Fig. 10

Comparison of the predicted and measured axial velocity distributions along the jet center line. Red-Doppler-shift data refer to trials for which the component beam direction opposed the center-line velocity. Blue-Doppler-shift data were obtained with the component beam direction aligned with the center-line velocity.

Fig. 11
Fig. 11

Comparison of the predicted and measured Mach number distribution along the jet axis. Values of the measured Mach number were derived from the measured temperatures and velocities along with physical constants of the major constituent, N2. The red- and blue-Doppler-shift velocities of Fig. 10 were averaged if coincident.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

T ν = I / I 0 = exp [ k ν ( x ) P abs ( x ) d x ] ,
T ν = exp ( k ν P abs L ) ,
k ν = ( 273 N L / T ) ( π e 2 / m c 2 ) F B ( T ) f [ S / ( 2 J + 1 ) ] ϕ ,
1 T ν = Δ I / I x = k ν ( x ) P abs ( x ) Δ x ,
S f = C k ν ( x ) P abs ( x ) I x [ A / ( A + Q ) ] ,
R = ( S a / S b ) exp [ ( E b E a ) / ( kT ) ] ,
R = { [ ( S f / I x ) d ν ] a / [ ( S f / I x ) d ν ] b } / [ A / ( A + Q ) ] a / [ A / ( A + Q ) ] b } .
ϕ = [ 2 ( ln 2 / π ) 0.5 / ν D ] V ( y , a ) ,
y = 2 ( ln 2 ) 0.5 ( ν ν 0 ) / ν D .
ν D = 7.16 × 10 7 ν 0 ( T [ K ] / M [ amu ] ) 0.5 .
a = ( ln 2 ) 0.5 ( ν c / ν D ) ,
a = β ( P / T n ) ,
a = 6020 ( P [ atm ] ) / ( T [ K ] ) 1.25
Δ ν D = ν 0 ( V i ) / c ,
V [ m / s ] = ( Δ ν D [ GHz ] ) ( λ [ nm ] ) / ( cos θ ) ,
Δ ν T = Δ ν D + Δ ν s .
Δ ν s [ GHz ] = ( 130 ) ( P [ atm ] ) / ( T [ K ] ) 0.56 ,
R = A exp ( B / T ) , T T R = 1 , R = A 1 exp ( B / T ) , T > T R = 1 ,
d R / d T = ± ( B / T 2 ) R ,
Δ E = γ ( N + 0.5 ) ,
I inc / I 0 = ( I probe / I 0 ) m , ( m = l / L = 1 / 2 ) ,

Metrics