Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Useful receiver telescope diameter of ground-based and airborne 1-, 2-, and 10-μm coherent lidars in the presence of atmospheric refractive turbulence

Not Accessible

Your library or personal account may give you access

Abstract

The integrated effect of atmospheric refractive turbulence on ground-based and airborne 1-, 2-, and 10-μm coherent lidars with different geometries is calculated as a function of height by using altitude profiles of Cn2.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence

Kin Pui Chan, Dennis K. Killinger, and Nobuo Sugimoto
Appl. Opt. 30(18) 2617-2627 (1991)

Optimal heterodyne detector array size for 1-μm coherent lidar propagation through atmospheric turbulence

Nobuo Sugimoto, Kin Pui Chan, and Dennis K. Killinger
Appl. Opt. 30(18) 2609-2616 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.