Abstract

The degraded images of dynamic objects obtained by using a phosphor-based electro-optical display are analyzed in terms of dynamic modulation transfer function (DMTF) and temporal characteristics of the display system. The direct correspondence between the DMTF and image smear is used in developing real-time techniques for the restoration of degraded images.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).
  2. C. E. Rash, J. Becker, “Analysis of Image Smear in CRT Displays Due to Scan Rate and Phosphor Persistence,” USAARL Rep. 83-5 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1982).
  3. A. A. S. Awwal, A. K. Cherri, M. A. Karim, D. L. Moon, “Dynamic modulation transfer function of a display system,” Appl. Opt. 30, 201–205 (1991).
    [CrossRef] [PubMed]
  4. L. Celaya, S. Mallick, “Incoherent processor for restoring images degraded by a linear smear,” Appl. Opt. 17, 2191–2194 (1978).
    [CrossRef] [PubMed]
  5. B. R. Sandel, D. F. Collins, A. L. Broadfoot, “Effect of phosphor persistence on photometry with image intensifiers and integrating readout devices,” Appl. Opt. 25, 3697–3704 (1986).
    [CrossRef] [PubMed]
  6. I. P. Csorba, “Image intensifiers in low light level and high speed imaging,” presented at Electronic Imaging '86 Meeting, Boston, Mass., 3–6 November 1986.
  7. R. W. Verona, Night Vision Laboratory, Fort Belvoir, Va. (personal communication).
  8. B. Javidi, H. J. Caulfield, J. L. Horner, “Real-time deconvolution by nonlinear image processing,” in 1989 Annual Meeting of Optical Society of America, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 89.
  9. F. Vachss, L. Hesselink, “Synthesis of a holographic image velocity filter using the nonlinear photorefractive effect,” Appl. Opt. 27, 2887–2894 (1988).
    [CrossRef] [PubMed]

1991 (1)

1988 (1)

1986 (1)

1978 (1)

Arnold, V.

R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).

Awwal, A. A. S.

Becker, J.

C. E. Rash, J. Becker, “Analysis of Image Smear in CRT Displays Due to Scan Rate and Phosphor Persistence,” USAARL Rep. 83-5 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1982).

Brindle, J. H.

R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).

Broadfoot, A. L.

Caulfield, H. J.

B. Javidi, H. J. Caulfield, J. L. Horner, “Real-time deconvolution by nonlinear image processing,” in 1989 Annual Meeting of Optical Society of America, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 89.

Celaya, L.

Cherri, A. K.

Collins, D. F.

Csorba, I. P.

I. P. Csorba, “Image intensifiers in low light level and high speed imaging,” presented at Electronic Imaging '86 Meeting, Boston, Mass., 3–6 November 1986.

Hesselink, L.

Horner, J. L.

B. Javidi, H. J. Caulfield, J. L. Horner, “Real-time deconvolution by nonlinear image processing,” in 1989 Annual Meeting of Optical Society of America, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 89.

Javidi, B.

B. Javidi, H. J. Caulfield, J. L. Horner, “Real-time deconvolution by nonlinear image processing,” in 1989 Annual Meeting of Optical Society of America, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 89.

Karim, M. A.

Mallick, S.

Moon, D. L.

Rash, C. E.

C. E. Rash, J. Becker, “Analysis of Image Smear in CRT Displays Due to Scan Rate and Phosphor Persistence,” USAARL Rep. 83-5 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1982).

Sandel, B. R.

Task, H. L.

R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).

Vachss, F.

Verona, R. W.

R. W. Verona, Night Vision Laboratory, Fort Belvoir, Va. (personal communication).

R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).

Appl. Opt. (4)

Other (5)

R. W. Verona, H. L. Task, V. Arnold, J. H. Brindle, “A Direct Measure of CRT Image Quality,” USAARL Rep. 79–14 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1979).

C. E. Rash, J. Becker, “Analysis of Image Smear in CRT Displays Due to Scan Rate and Phosphor Persistence,” USAARL Rep. 83-5 (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1982).

I. P. Csorba, “Image intensifiers in low light level and high speed imaging,” presented at Electronic Imaging '86 Meeting, Boston, Mass., 3–6 November 1986.

R. W. Verona, Night Vision Laboratory, Fort Belvoir, Va. (personal communication).

B. Javidi, H. J. Caulfield, J. L. Horner, “Real-time deconvolution by nonlinear image processing,” in 1989 Annual Meeting of Optical Society of America, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Block diagram of an electro-optical imaging system.

Fig. 2
Fig. 2

DMTF of an electro-optical display.

Fig. 3
Fig. 3

64 × 64 input binary image.

Fig. 4
Fig. 4

Images degraded as a result of horizontal speeds of (a) 4 cm/s, (b) 8 cm/s, and (c) 15 cm/s.

Fig. 5
Fig. 5

Images degraded because of vertical speeds of (a) 10 cm/s, (b) 15 cm/s.

Fig. 6
Fig. 6

Images degraded by motion along (a) 45° with 10 cm/s, and (b) 20° with 15 cm/s.

Fig. 7
Fig. 7

Adaptive restoration: (a) model. (b) system.

Fig. 8
Fig. 8

Nonadaptive restoration with a Fourier hologram used as an inverse filter.

Fig. 9
Fig. 9

Image of Fig. 4(c) restored by using inverse filters corresponding to (a) 12 cm/s, (b) 7 cm/s.

Fig. 10
Fig. 10

Image degraded by a horizontal speed of 5 cm/s restored by using an inverse filter corresponding to a horizontal speed of 10 cm/s.

Fig. 11
Fig. 11

Image degraded by a motion of 10 cm/s at an angle of 30° restored by using filters corresponding to (a) 6 cm/s, (b) 8 cm/s, (c) 10 cm/s, (d) 12 cm/s.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h ( x , y , t ) = s ( x , y ) Δ ( t ) ,
G ( u , υ , f ) = D ( f ) S ( u , υ ) I ( u , υ ) δ ( f u m υ n ) ,
Δ ( t ) = A 1 exp ( t / τ 1 ) + A 2 exp ( t / τ 2 ) + A 3 exp ( t / τ 3 ) + ,
Δ ( t ) = τ 1 exp ( t / τ ) ,
D ( f ) = ( 1 + j 2 π f τ ) 1 .

Metrics