Abstract

Optical logic circuits using function/interconnection modules are needed for the construction of optical digital computers. Construction of function/interconnection modules by holographic techniques is proposed. Holographic function/interconnection modules do not require the complementary inputs that were needed for modules proposed previously. Moreover, a number of modules can be constructed in one filtering system by our holographic technique. Experiments describing this kind of implementation are described. Potential integration of the modules into one filtering system and the power efficiency of proposed modules are also discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Huang, “Architectural consideration involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
    [CrossRef]
  2. Y. Takaki, H. Ohzu, “Optical logic operation by holographic filters,” Jpn J. Opt. (Kogaku) 16, 345–351 (1987).
  3. P. S. Guilfoyle, “Fourier transform plane superposition multiplier: theory, experimental results, and discussion,” Appl. Opt. 17, 3060–3066 (1978).
    [CrossRef] [PubMed]
  4. Y. Takaki, H. Ohzu, “Optical logic array by use of wavefront superimposition,” Jpn J. Opt. (Kogaku) 19, 39–44 (1990).
  5. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computers,” Appl. Opt. 6, 1739–1748 (1967).
    [CrossRef] [PubMed]
  6. B. R. Brown, A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [CrossRef] [PubMed]
  7. D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–295 (1974).

1990 (1)

Y. Takaki, H. Ohzu, “Optical logic array by use of wavefront superimposition,” Jpn J. Opt. (Kogaku) 19, 39–44 (1990).

1987 (1)

Y. Takaki, H. Ohzu, “Optical logic operation by holographic filters,” Jpn J. Opt. (Kogaku) 16, 345–351 (1987).

1984 (1)

A. Huang, “Architectural consideration involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

1978 (1)

1974 (1)

D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–295 (1974).

1967 (1)

1966 (1)

Brown, B. R.

Chu, D. C.

D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–295 (1974).

Fienup, J. R.

D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–295 (1974).

Guilfoyle, P. S.

Huang, A.

A. Huang, “Architectural consideration involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

Lohmann, A. W.

Ohzu, H.

Y. Takaki, H. Ohzu, “Optical logic array by use of wavefront superimposition,” Jpn J. Opt. (Kogaku) 19, 39–44 (1990).

Y. Takaki, H. Ohzu, “Optical logic operation by holographic filters,” Jpn J. Opt. (Kogaku) 16, 345–351 (1987).

Paris, D. P.

Takaki, Y.

Y. Takaki, H. Ohzu, “Optical logic array by use of wavefront superimposition,” Jpn J. Opt. (Kogaku) 19, 39–44 (1990).

Y. Takaki, H. Ohzu, “Optical logic operation by holographic filters,” Jpn J. Opt. (Kogaku) 16, 345–351 (1987).

Appl. Opt. (3)

Jpn J. Opt. (Kogaku) (2)

Y. Takaki, H. Ohzu, “Optical logic array by use of wavefront superimposition,” Jpn J. Opt. (Kogaku) 19, 39–44 (1990).

Y. Takaki, H. Ohzu, “Optical logic operation by holographic filters,” Jpn J. Opt. (Kogaku) 16, 345–351 (1987).

Opt. Eng. (1)

D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–295 (1974).

Proc. IEEE (1)

A. Huang, “Architectural consideration involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Block diagram of the function/interconnection module. Two inputs are connected to both logic arrays to produce two outputs.

Fig. 2
Fig. 2

Logic array based on a 2-bit decoder. Four outputs of four logic operations are selected to perform 16 logic operations.

Fig. 3
Fig. 3

Optical implementation of two sets of 2-bit decoders. Two clusters of four logic operations are duplicated, and outputs are selected by two sets of four apertures.

Fig. 4
Fig. 4

Point-spread function of the spatial filtering system for 2-bit decoders. Two clusters of four logic operations are duplicated.

Fig. 5
Fig. 5

Wave fronts and intensities on the output plane, with two variable inputs, 1 and 0.

Fig. 6
Fig. 6

Optical implementation of the gathering part of the function/interconnection module.

Fig. 7
Fig. 7

Point-spread function of the spatial filtering system for the gathering part of the function/interconnection module.

Fig. 8
Fig. 8

Schematic of the optical system for the function/interconnection module.

Fig. 9
Fig. 9

Examples of logic primitives and connection primitives that the function/interconnection module performs: (a) positions of two clusters of four apertures, (b) a computation complete set, (c) a topologically complete set.

Fig. 10
Fig. 10

Several function/interconnection modules can be constructed in one optical setup, because of space invariance.

Fig. 11
Fig. 11

Schematic of the experimental system of the function/interconnection modules.

Fig. 12
Fig. 12

Pattern of the Lohmann-type binary hologram for the function/interconnection module.

Fig. 13
Fig. 13

Experimental results of one function/interconnection module. Input patterns, filtered images, and masked/thresholding images are shown in the left, center, and right columns, respectively.

Fig. 14
Fig. 14

Experimental results of four function/interconnection modules. Four modules operate simultaneously in one spatial filtering system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F L A ( ν x , ν y ) = 3 / 8 × { [ ( 2 / 3 ) exp ( j 5 π l ν x ) - ( 1 / 3 ) exp ( j 3 π l ν x ) + ( 2 / 3 ) exp ( j π l ν x ) + ( 2 / 3 ) exp ( - j π l ν x ) - ( 1 / 3 ) exp ( - j 3 π l ν x ) + ( 2 / 3 ) exp ( - j 5 π l ν x ) ] exp ( - j 3 π l ν y ) + [ ( - 2 / 3 ) exp ( j 5 π l ν x ) + ( 1 / 3 ) exp ( j 3 π l ν x ) + ( 2 / 3 ) exp ( j π l ν x ) - ( 2 / 3 ) exp ( - j π l ν x ) - ( 1 / 3 ) exp ( - j 3 π l ν x ) + ( 2 / 3 ) exp ( - j 5 π l ν x ) ] × exp ( - j π l ν y ) + [ ( 2 / 3 ) exp ( j 5 π l ν x ) + ( 1 / 3 ) exp ( j 3 π l ν x ) - ( 2 / 3 ) exp ( j π l ν x ) + ( 2 / 3 ) exp ( - j π l ν x ) + ( 1 / 3 ) exp ( - j 3 π l ν x ) - ( 2 / 3 ) exp ( - j 5 π l ν x ) ] exp ( j π l ν y ) + [ ( - 2 / 3 ) exp ( j 5 π l ν x ) + exp ( j 3 π l ν x ) - ( 2 / 3 ) exp ( j π l ν x ) - ( 2 / 3 ) exp ( - j π l ν x ) + exp ( - j 3 π l ν x ) - ( 2 / 3 ) exp ( - j 5 π l ν x ) ] exp ( j 3 π l ν y ) ] } ,
F C N T ( ν x , ν y ) = ( 1 / 4 ) [ exp ( j 3 π l ν y ) + exp ( j π l ν y ) + exp ( - j π l ν y ) + exp ( - j 3 π l ν y ) ] ,
η = ( power of ON pixels ) / ( power all pixels ) .

Metrics