Abstract

Simple patterns consisting of three spots (V and Γ) have been recognized by dividing, shifting, and recombining beams onto bistable ZnS interference filters. This experiment demonstrates AND-gate operation, cascading, and a moderate amount of parallelism, but a laser power of several watts was required and the response times were several milliseconds. An associative memory for fingerprint identification has been constructed using a VanderLugt correlator and an interference filter as a reflective thresholding device.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Wherrett, D. Hutchings, D. Russell, “Optically Bi-stable Interference Filters: Optimization Considerations,” J. Opt. Soc. Am. B 3, 351 (1986).
    [CrossRef]
  2. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
    [CrossRef]
  3. A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, IEEE Tenth International Optical Computing Conference (1983), p. 13.
    [CrossRef]
  4. K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitutions,” Appl. Opt. 25, 3054 (1986).
    [CrossRef] [PubMed]
  5. L. Wang et al., “Symbolic Substitution Using ZnS Interference Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 14 (1987).
  6. J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).
    [CrossRef] [PubMed]
  7. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984).
  8. D. Psaltis, N. Farhat, “Optical Information Processing Based on an Associative-Memory Model of Neural Nets with Thresholding and Feedback,” Opt. Lett. 10, 98 (1985).
    [CrossRef] [PubMed]
  9. Y. S. Abu-Mostafa, D. Psaltis, “Optical Neural Computers,” Sci. Am. 256(3), 88 (1987).
    [CrossRef]
  10. E. G. Paek, D. Psaltis, “Optical Associative Memory Using Fourier Transform Holograms,” Opt. Eng. 26, 428 (1987).
    [CrossRef]
  11. D. Anderson, M. C. Erie, “Resonator Memories and Optical Novelty Filters,” Opt. Eng. 26, 434 (1987).
    [CrossRef]
  12. Y. Owechko, G. J. Dunning, E. Marom, B. H. Soffer, “Holographic Associative Memory with Nonlinearities in the Correlation Domain,” Appl. Opt. 26, 1900 (1987).
    [CrossRef] [PubMed]
  13. T. G. Georgekutty, H.-K. Liu, “Simplified Dichromated Gelatin Hologram Recording Process,” Appl. Opt. 26, 372 (1987).
    [CrossRef] [PubMed]
  14. J. Hong, D. Psaltis, “Storage Capacity of Holographic Associative Memories,” Opt. Lett. 11, 812 (1986).
    [CrossRef] [PubMed]

1987 (6)

L. Wang et al., “Symbolic Substitution Using ZnS Interference Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 14 (1987).

Y. S. Abu-Mostafa, D. Psaltis, “Optical Neural Computers,” Sci. Am. 256(3), 88 (1987).
[CrossRef]

E. G. Paek, D. Psaltis, “Optical Associative Memory Using Fourier Transform Holograms,” Opt. Eng. 26, 428 (1987).
[CrossRef]

D. Anderson, M. C. Erie, “Resonator Memories and Optical Novelty Filters,” Opt. Eng. 26, 434 (1987).
[CrossRef]

Y. Owechko, G. J. Dunning, E. Marom, B. H. Soffer, “Holographic Associative Memory with Nonlinearities in the Correlation Domain,” Appl. Opt. 26, 1900 (1987).
[CrossRef] [PubMed]

T. G. Georgekutty, H.-K. Liu, “Simplified Dichromated Gelatin Hologram Recording Process,” Appl. Opt. 26, 372 (1987).
[CrossRef] [PubMed]

1986 (3)

1985 (1)

1984 (1)

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

1982 (1)

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).
[CrossRef] [PubMed]

Abu-Mostafa, Y. S.

Y. S. Abu-Mostafa, D. Psaltis, “Optical Neural Computers,” Sci. Am. 256(3), 88 (1987).
[CrossRef]

Anderson, D.

D. Anderson, M. C. Erie, “Resonator Memories and Optical Novelty Filters,” Opt. Eng. 26, 434 (1987).
[CrossRef]

Brenner, K.-H.

Dunning, G. J.

Erie, M. C.

D. Anderson, M. C. Erie, “Resonator Memories and Optical Novelty Filters,” Opt. Eng. 26, 434 (1987).
[CrossRef]

Farhat, N.

Georgekutty, T. G.

Gibbs, H. M.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Hong, J.

Hopfield, J. J.

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).
[CrossRef] [PubMed]

Huang, A.

K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitutions,” Appl. Opt. 25, 3054 (1986).
[CrossRef] [PubMed]

A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, IEEE Tenth International Optical Computing Conference (1983), p. 13.
[CrossRef]

Hutchings, D.

Kohonen, T.

T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984).

Liu, H.-K.

Macleod, H. A.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Marom, E.

Olbright, G. R.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Owechko, Y.

Paek, E. G.

E. G. Paek, D. Psaltis, “Optical Associative Memory Using Fourier Transform Holograms,” Opt. Eng. 26, 428 (1987).
[CrossRef]

Peyghambarian, N.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Psaltis, D.

Russell, D.

Soffer, B. H.

Streibl, N.

Van Milligen, F.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

Wang, L.

L. Wang et al., “Symbolic Substitution Using ZnS Interference Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 14 (1987).

Wherrett, B. S.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 1031 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

E. G. Paek, D. Psaltis, “Optical Associative Memory Using Fourier Transform Holograms,” Opt. Eng. 26, 428 (1987).
[CrossRef]

D. Anderson, M. C. Erie, “Resonator Memories and Optical Novelty Filters,” Opt. Eng. 26, 434 (1987).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

L. Wang et al., “Symbolic Substitution Using ZnS Interference Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 14 (1987).

Sci. Am. (1)

Y. S. Abu-Mostafa, D. Psaltis, “Optical Neural Computers,” Sci. Am. 256(3), 88 (1987).
[CrossRef]

Other (2)

T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984).

A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, IEEE Tenth International Optical Computing Conference (1983), p. 13.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement for digital pattern recognition.

Fig. 2
Fig. 2

Recognition of V. Input pattern is in the upper left. Shifted pattern is in the upper right. The result is in the lower left, showing the occurrence of the right side of a V in only one location.

Fig. 3
Fig. 3

Recognition of Γ Input pattern is the upper two rows. The output of the two successive AND-gate operations used to look for Γs is shown underneath, clearly indicating the presence of three Γs.

Fig. 4
Fig. 4

Experimental arrangement for associative memory.

Fig. 5
Fig. 5

Object fingerprints: (a) F2, (b) F3.

Fig. 6
Fig. 6

Photograph of the Fourier transform plane for the object fingerprints: (a) Fourier transform plane for F2, (b) Fourier transform plane for fingerprint F3.

Fig. 7
Fig. 7

Partially obstructed objects: (a) F2, (b) F3.

Fig. 8
Fig. 8

Cross-correlation beams for partial and whole input objects. (a) Upper, partial F2 input; lower, whole F2 input, (b) Upper, partial F3 input; lower, whole F3 input.

Fig. 9
Fig. 9

Optically bistable interference filter response: Upper, switched on by the correlation input (vertically offset for clarity); lower, switched off. (Trace describes input holding beam intensity −x vs transmitted holding beam intensity y).

Fig. 10
Fig. 10

Recalled object F2. (a) Autoassociatively recalled: left, switched off; right, switched on. (b) Heteroassociatively recalled: left, switched off; right, switched on.

Fig. 11
Fig. 11

Recognition of partial input for stored WX. Top, partial input; bottom left, recall switched off; bottom right, recall switched on.

Metrics