Abstract

We present precise measurements of the refractive-index dispersion in the 0.6–1.5-μm range of dielectric films commonly used to form optical waveguides on Si. These are thermal SiO2 and phosphosilicate glasses formed from several types of low pressure chemical vapor deposition and Si3N4 formed by LPCVD. Mode refractive-index measurements were made with absolute accuracies of 1 × 10−4. We show that for samples ≳3 μm thick, the error in the film refractive index, determined by extrapolation of the mode refractive index data of the lowest two modes, is ≲1 × 10−4. Annealing studies of the phosphosilicate glass samples show that films containing 2% or more of P reached their equilibrium refractive indices after annealing at 800°C, while undoped silica films require annealing at 1100°C to reach equilibrium.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stutius, W. Streifer, “Silicon Nitride Films on Silicon for Optical Waveguides,” Appl. Opt. 16, 3218 (1977).
    [CrossRef] [PubMed]
  2. S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).
  3. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low Loss Si3N4–SiO2 Optical Waveguides on Si,” Appl. Opt. 26, 2621 (1987).
    [CrossRef] [PubMed]
  4. N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
    [CrossRef]
  5. A. Naumann, J. T. Boyd, “Ring Resonators Fabricated in Phosphosilicate Glass Films Deposited by Chemical Vapor Deposition,” J. Lightwave Technol. LT-4, 1294 (1986).
    [CrossRef]
  6. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
    [CrossRef]
  7. R. M. Levin, A. C. Adams, “Low Pressure Deposition of Phosphosilicate Glass Films,” J. Electrochem. Soc. 129, 1588 (1982).
    [CrossRef]
  8. D. L. Wood (unpublished).
  9. J. W. Fleming, D. L. Wood, “Refractive Index Dispersion and Related Properties in Flourine Doped Silica,” Appl. Opt. 22, 3102 (1983).
    [CrossRef] [PubMed]
  10. N. Shibata, T. Edahiro, “Refractive-Index Dispersion for GeO2, P2O5, and B2O3 Doped Silica Glasses in Optical Fibers,” Trans. IECE Jpn. 65, 166 (1982).
  11. R. A. Levy, T. Y. Kometani, “Analysis of Borophosphosilicate Glass Films by Inductively Coupled Plasma—Atomic Emission Spectroscopy,” J. Electrochem. Soc. 134, 1565 (1987).
    [CrossRef]

1988

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

1987

R. A. Levy, T. Y. Kometani, “Analysis of Borophosphosilicate Glass Films by Inductively Coupled Plasma—Atomic Emission Spectroscopy,” J. Electrochem. Soc. 134, 1565 (1987).
[CrossRef]

C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low Loss Si3N4–SiO2 Optical Waveguides on Si,” Appl. Opt. 26, 2621 (1987).
[CrossRef] [PubMed]

1986

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

A. Naumann, J. T. Boyd, “Ring Resonators Fabricated in Phosphosilicate Glass Films Deposited by Chemical Vapor Deposition,” J. Lightwave Technol. LT-4, 1294 (1986).
[CrossRef]

1983

1982

R. M. Levin, A. C. Adams, “Low Pressure Deposition of Phosphosilicate Glass Films,” J. Electrochem. Soc. 129, 1588 (1982).
[CrossRef]

N. Shibata, T. Edahiro, “Refractive-Index Dispersion for GeO2, P2O5, and B2O3 Doped Silica Glasses in Optical Fibers,” Trans. IECE Jpn. 65, 166 (1982).

1977

Adams, A. C.

R. M. Levin, A. C. Adams, “Low Pressure Deposition of Phosphosilicate Glass Films,” J. Electrochem. Soc. 129, 1588 (1982).
[CrossRef]

Boyd, J. T.

A. Naumann, J. T. Boyd, “Ring Resonators Fabricated in Phosphosilicate Glass Films Deposited by Chemical Vapor Deposition,” J. Lightwave Technol. LT-4, 1294 (1986).
[CrossRef]

Edahiro, T.

N. Shibata, T. Edahiro, “Refractive-Index Dispersion for GeO2, P2O5, and B2O3 Doped Silica Glasses in Optical Fibers,” Trans. IECE Jpn. 65, 166 (1982).

Fleming, J. W.

Gidon, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

Henry, C. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low Loss Si3N4–SiO2 Optical Waveguides on Si,” Appl. Opt. 26, 2621 (1987).
[CrossRef] [PubMed]

Johnson, B. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

Katz, L. E.

Kawachi, M.

N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

Kazarinov, R. F.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low Loss Si3N4–SiO2 Optical Waveguides on Si,” Appl. Opt. 26, 2621 (1987).
[CrossRef] [PubMed]

Kometani, T. Y.

R. A. Levy, T. Y. Kometani, “Analysis of Borophosphosilicate Glass Films by Inductively Coupled Plasma—Atomic Emission Spectroscopy,” J. Electrochem. Soc. 134, 1565 (1987).
[CrossRef]

Lee, H. J.

Levin, R. M.

R. M. Levin, A. C. Adams, “Low Pressure Deposition of Phosphosilicate Glass Films,” J. Electrochem. Soc. 129, 1588 (1982).
[CrossRef]

Levy, R. A.

R. A. Levy, T. Y. Kometani, “Analysis of Borophosphosilicate Glass Films by Inductively Coupled Plasma—Atomic Emission Spectroscopy,” J. Electrochem. Soc. 134, 1565 (1987).
[CrossRef]

Lizet, J.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

Mottier, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

Naumann, A.

A. Naumann, J. T. Boyd, “Ring Resonators Fabricated in Phosphosilicate Glass Films Deposited by Chemical Vapor Deposition,” J. Lightwave Technol. LT-4, 1294 (1986).
[CrossRef]

Olsson, N. A.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

Orlowsky, K. J.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low Loss Si3N4–SiO2 Optical Waveguides on Si,” Appl. Opt. 26, 2621 (1987).
[CrossRef] [PubMed]

Shibata, N.

N. Shibata, T. Edahiro, “Refractive-Index Dispersion for GeO2, P2O5, and B2O3 Doped Silica Glasses in Optical Fibers,” Trans. IECE Jpn. 65, 166 (1982).

Streifer, W.

Stutius, W.

Takato, N.

N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

Valette, S.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

Verbeek, B. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

Wood, D. L.

Yasu, M.

N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

Appl. Opt.

Electron. Lett.

N. Takato, M. Yasu, M. Kawachi, “Low-Loss High Silica Single Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, B. H. Johnson, “Integrated Four-Channel Mach-Zehnder Multi/Demultiplexer Fabricated with Phosphorous Doped SiO2 Waveguides on Si,” IEEE/OSA J. Lightwave Technol. LT-6, 1011 (1988).
[CrossRef]

J. Electrochem. Soc.

R. M. Levin, A. C. Adams, “Low Pressure Deposition of Phosphosilicate Glass Films,” J. Electrochem. Soc. 129, 1588 (1982).
[CrossRef]

R. A. Levy, T. Y. Kometani, “Analysis of Borophosphosilicate Glass Films by Inductively Coupled Plasma—Atomic Emission Spectroscopy,” J. Electrochem. Soc. 134, 1565 (1987).
[CrossRef]

J. Lightwave Technol.

A. Naumann, J. T. Boyd, “Ring Resonators Fabricated in Phosphosilicate Glass Films Deposited by Chemical Vapor Deposition,” J. Lightwave Technol. LT-4, 1294 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng 651, 94 (1986).

Trans. IECE Jpn.

N. Shibata, T. Edahiro, “Refractive-Index Dispersion for GeO2, P2O5, and B2O3 Doped Silica Glasses in Optical Fibers,” Trans. IECE Jpn. 65, 166 (1982).

Other

D. L. Wood (unpublished).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the prism rotational stage R, detectors Di, polarizers P chopper C, the light sources, and a sketch of the prism and sample at the contact point.

Fig. 2
Fig. 2

Typical rotation spectrum for a phosphosilicate glass film on Si.

Fig. 3
Fig. 3

Sketch showing the linear extrapolation of the layer index from the measured mode indices. Plot of the calculated error in making this extrapolation as a function of the thickness of the air gap for different thickness samples. Curves 3 and 4 show that this error is a function of d/λ.

Fig. 4
Fig. 4

Calculated error in determining the extrapolated film refractive index as a function of wavelength and film thickness.

Fig. 5
Fig. 5

Measured dispersion curves for silica samples shown in Table I. The curves are based on measurements at 0.6328, 1.2775, and 1.4705 μm.

Fig. 6
Fig. 6

Dispersion of the silica films measured relative to the thermal oxide (HIPOX) sample.

Fig. 7
Fig. 7

Refractive indices of silica films as a function of phosphorous doping.

Fig. 8
Fig. 8

Rotation spectrum for a Si3N4 layer 4000 Å thick on 10 μm of thermal oxide. The modes guided by the nitride layer were measured both by the dips in reflection and from peaks in the spectrum of light emitted from the end of the guide.

Fig. 9
Fig. 9

Determination of the refractive index of Si3N4 from fitting the data in Fig. 8.

Tables (1)

Tables Icon

Table I SiO2 Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n mode = n p sin θ 3 ,
r 1 r 2 exp ( 2 i k x d ) = 1 ,
k x = 2 π λ ( n layer 2 - n mode 2 ) 1 / 2 ,
n mode 2 = n layer 2 - ( N λ 2 d ) 2 .
r 1 = k x - i γ k x + i γ ,

Metrics