Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
    [CrossRef]
  2. R. F. Bent, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus 21, 110 (1985).
  3. T. A. Driscoll, H. J. Hoffman, R. E. Stone, P. E. Perkins, “Efficient Second-Harmonic Generation in KTP Crystals,” J. Opt. Soc. Am. B 3, 683 (1986).
    [CrossRef]
  4. M. J. Weber, Ed., CRC Handbook of Laser Science and Technology (CRC Press, Cleveland, OH, 1985), Vol. 3.
  5. Y. S. Liu, D. Dentz, R. F. Bent, “High-Average-Power Intracavity Second-Harmonic Generation Using KTiOPO4 in an Acousto-Optically Q-Switched Nd:YAG Laser Oscillator at 5 kHz,” Opt. Lett. 9, 76 (1984).
    [CrossRef] [PubMed]
  6. Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.
  7. A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
    [CrossRef]
  8. A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
    [CrossRef]
  9. D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
    [CrossRef]
  10. J. D. Bierlein, “Crystals of (K,Rb,Tl,NH4)TiO(P,As)O4 and Their Use in Electrooptic Devices,” assigned to E. I. DuPont de Nemours and Co., U.S. Patent3,943,373 (6Apr.1976).
  11. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second Harmonic Generation and Accurate Index of Refraction Measurements in the Flux-Grown KTiOPO4,” Appl. Opt. 26, 2390 (1987).
    [CrossRef] [PubMed]

1987 (2)

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second Harmonic Generation and Accurate Index of Refraction Measurements in the Flux-Grown KTiOPO4,” Appl. Opt. 26, 2390 (1987).
[CrossRef] [PubMed]

1986 (2)

T. A. Driscoll, H. J. Hoffman, R. E. Stone, P. E. Perkins, “Efficient Second-Harmonic Generation in KTP Crystals,” J. Opt. Soc. Am. B 3, 683 (1986).
[CrossRef]

A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

1985 (2)

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

R. F. Bent, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus 21, 110 (1985).

1984 (1)

1976 (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Akhmanov, S. A.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Aleksandrovskii, A. L.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Anthon, D. W.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

Ballman, A. A.

A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Belt, R.

Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.

Bent, R. F.

Bierlein, J. D.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

J. D. Bierlein, “Crystals of (K,Rb,Tl,NH4)TiO(P,As)O4 and Their Use in Electrooptic Devices,” assigned to E. I. DuPont de Nemours and Co., U.S. Patent3,943,373 (6Apr.1976).

Brown, H.

A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Byer, R. L.

Clark, J. H.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

Dentz, D.

Y. S. Liu, D. Dentz, R. F. Bent, “High-Average-Power Intracavity Second-Harmonic Generation Using KTiOPO4 in an Acousto-Optically Q-Switched Nd:YAG Laser Oscillator at 5 kHz,” Opt. Lett. 9, 76 (1984).
[CrossRef] [PubMed]

Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.

Drafall, L.

Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.

Driscoll, T. A.

Dyakov, V. A.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Eckardt, R. C.

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Gashurov, G.

R. F. Bent, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus 21, 110 (1985).

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Guthals, D. M.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

Hoffman, H. J.

Hu, B. Q.

Huang, C. E.

Liu, Y. S.

R. F. Bent, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus 21, 110 (1985).

Y. S. Liu, D. Dentz, R. F. Bent, “High-Average-Power Intracavity Second-Harmonic Generation Using KTiOPO4 in an Acousto-Optically Q-Switched Nd:YAG Laser Oscillator at 5 kHz,” Opt. Lett. 9, 76 (1984).
[CrossRef] [PubMed]

Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.

Nathel, H.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

Olson, D. H.

A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Perkins, P. E.

Pryalkin, V. I.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Stone, R. E.

Zheludev, N. I.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Appl. Opt. (1)

J. Cryst. Growth (1)

A. A. Ballman, H. Brown, D. H. Olson, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

J. Appl. Phys. (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1–xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus (1)

R. F. Bent, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus 21, 110 (1985).

Opt. Lett. (1)

Rev. Sci. Inst. (1)

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Inst. 58, 2054 (1987).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. Dyakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Other (3)

J. D. Bierlein, “Crystals of (K,Rb,Tl,NH4)TiO(P,As)O4 and Their Use in Electrooptic Devices,” assigned to E. I. DuPont de Nemours and Co., U.S. Patent3,943,373 (6Apr.1976).

M. J. Weber, Ed., CRC Handbook of Laser Science and Technology (CRC Press, Cleveland, OH, 1985), Vol. 3.

Y. S. Liu, L. Drafall, D. Dentz, R. Belt, “Nonlinear Optical Properties of KTiOPO4 (KTP),” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1981), paper WF4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

SHG phase matching curve for KTP with θ = 90°: △, hydrothermal crystals, various cuts; □, flux-grown crystal through 100 face; ■, flux-grown crystal through 110 face. The solid curves were calculated from the revised dispersion curves; using the data from Ref. 4 would give a similar curve with the intercepts shifted to 986 and 1059 nm.

Fig. 2
Fig. 2

SHG phase matching curves for KTP with ϕ = 0° (upper curve) and ϕ = 90° (lower curve): △, flux-grown crystal through 011 face, ϕ = 90°; ■, flux-grown crystal through 100 face, ϕ = 0°;□, flux-grown crystal, through 201 face, ϕ = 0°. The solid curves were calculated from the revised dispersion curves.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n x 2 = 2.029809 + 0.9737485 λ 2 λ 2 - 0.04093072 + 1.048585 λ 2 λ 2 - 100.0 , n y 2 = 2.079195 + 0.9412874 λ 2 λ 2 - 0.04595899 + 0.9320789 λ 2 λ 2 - 100.0 , n z 2 = 2.006239 + 1.2965213 λ 2 λ 2 - 0.04807691 + 1.1329810 λ 2 λ 2 - 100.0 ,

Metrics