Abstract

It is shown that the vibrational state population of stratospheric nitric oxide (NO) could be substantially different from that expected on the basis of local thermodynamic equilibrium (LTE). Deviations from LTE may arise because stratospheric NO can be photochemically produced from NO2 with several vibrational quanta. Model calculations suggest that the population of NO(υ = 1) could be some 30% above that expected from LTE at 30 km with smaller enhancements above and below. Substantially larger enhancements are predicted for NO(υ = 2). This result is shown to have important implications for NO determination by remote sensing of IR emission. Data needed for the quantification of these effects are enumerated.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984).
    [CrossRef]
  2. C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
    [CrossRef]
  3. S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
    [CrossRef]
  4. C. Reber, Upper Atmospheric Research Satellite (UARS) Mission, NASA/GSFC Report 430-1003-001, Greenbelt, MD (1985).
  5. T. C. Degges, “Vibrationally Excited Nitric Oxide in the Upper Atmosphere,” Appl. Opt. 10, 1856 (1971).
    [CrossRef] [PubMed]
  6. G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982).
    [CrossRef]
  7. A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
    [CrossRef]
  8. T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
    [CrossRef]
  9. G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972).
    [CrossRef]
  10. H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
    [CrossRef]
  11. C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
    [CrossRef]
  12. T. Ogawa, “Excitation Processes of Infrared Atmospheric Emissions,” Planet. Space Sci. 24, 749 (1976).
    [CrossRef]
  13. D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
    [CrossRef]
  14. F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
    [CrossRef]
  15. B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
    [CrossRef]
  16. L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986).
    [CrossRef]
  17. J. C. Stephenson, “Vibrational Relaxation of NO X2Π(υ = 1) in the Temperature Range 100–300 K,” J. Chem. Phys. 60, 4289 (1974).
    [CrossRef]
  18. W. B. DeMore et al., “Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling,” JPL Publ. 85-37 (JPL, Pasadena, CA, 1985).
  19. S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
    [CrossRef]
  20. D. F. Strobel, “Parameterization of the Atmospheric Heating Rate from 15 to 120 km due to O2 and O3 Absorption of Solar Radiation,” J. Geophys. Res. 83, 6225 (1978).
    [CrossRef]
  21. J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986).
    [CrossRef]
  22. R. B. Bernstein, Chemical Dynamics Via Molecular Beam and Laser Techniques (Clarendon, Oxford, 1982).
  23. R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein.
    [CrossRef]
  24. S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978).
    [CrossRef]
  25. S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980).
    [CrossRef]
  26. S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).
  27. J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987).
    [PubMed]
  28. V. G. Kunde et al., “Infrared Spectroscopy of the Lower Stratosphere with a Balloon-Borne Cryogenic Fourier Spectrometer,” Appl. Opt. 26, 545 (1987).
    [CrossRef] [PubMed]
  29. B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
    [CrossRef]
  30. T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

1987 (1)

1986 (3)

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986).
[CrossRef]

J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986).
[CrossRef]

1985 (2)

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

1984 (3)

J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984).
[CrossRef]

C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
[CrossRef]

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

1983 (1)

T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
[CrossRef]

1982 (3)

G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982).
[CrossRef]

C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
[CrossRef]

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

1981 (1)

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

1980 (2)

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980).
[CrossRef]

1978 (3)

B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
[CrossRef]

S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978).
[CrossRef]

D. F. Strobel, “Parameterization of the Atmospheric Heating Rate from 15 to 120 km due to O2 and O3 Absorption of Solar Radiation,” J. Geophys. Res. 83, 6225 (1978).
[CrossRef]

1976 (1)

T. Ogawa, “Excitation Processes of Infrared Atmospheric Emissions,” Planet. Space Sci. 24, 749 (1976).
[CrossRef]

1975 (1)

R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein.
[CrossRef]

1974 (1)

J. C. Stephenson, “Vibrational Relaxation of NO X2Π(υ = 1) in the Temperature Range 100–300 K,” J. Chem. Phys. 60, 4289 (1974).
[CrossRef]

1972 (1)

G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972).
[CrossRef]

1971 (1)

1956 (1)

F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
[CrossRef]

Anderson, G. P.

S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).

Arikawa, T.

T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

Baker, D. J.

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

Barnett, J. J.

C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
[CrossRef]

Baulch, D. L.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Bernstein, R. B.

R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein.
[CrossRef]

R. B. Bernstein, Chemical Dynamics Via Molecular Beam and Laser Techniques (Clarendon, Oxford, 1982).

Bischel, W. K.

T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
[CrossRef]

Busch, G. E.

G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972).
[CrossRef]

Caledonia, G. E.

G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982).
[CrossRef]

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).

Cox, R. A.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Degges, T. C.

DeMore, W. B.

W. B. DeMore et al., “Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling,” JPL Publ. 85-37 (JPL, Pasadena, CA, 1985).

Donovan, R. J.

C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
[CrossRef]

Doyenette, L.

L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986).
[CrossRef]

Dyer, M. J.

T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
[CrossRef]

Farantos, S. C.

S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980).
[CrossRef]

S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978).
[CrossRef]

Fotakis, C.

C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
[CrossRef]

Geilhaupt, M.

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

Gille, J. C.

J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984).
[CrossRef]

Gordiets, B. F.

B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
[CrossRef]

Green, B. D.

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

Greider, W. F.

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

Hampson, R. F.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Hastie, D. R.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

Jackman, C. H.

J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986).
[CrossRef]

Jones, R. L.

C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
[CrossRef]

Kanazawa, K.

T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

Kaye, J. A.

J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986).
[CrossRef]

Kennealy, J. P.

G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982).
[CrossRef]

Kerr, J. A.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Kerridge, B. J.

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

Kiehl, J. T.

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

Kniezys, F. X.

S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).

Kumer, J. B.

J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987).
[PubMed]

Kunde, V. G.

Levine, R. D.

R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein.
[CrossRef]

Lipscomb, F. J.

F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
[CrossRef]

Madronich, S.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

Margottin-Maclou, M.

L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986).
[CrossRef]

Markov, M. N.

B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
[CrossRef]

McKendrick, C. B.

C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
[CrossRef]

Meier, K.

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

Mergenthaler, J. L.

J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987).
[PubMed]

Murphy, R. E.

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

Murrell, J. N.

S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980).
[CrossRef]

S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978).
[CrossRef]

Nadile, R. M.

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

Norrish, R. G. W.

F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
[CrossRef]

Ogawa, T.

T. Ogawa, “Excitation Processes of Infrared Atmospheric Emissions,” Planet. Space Sci. 24, 749 (1976).
[CrossRef]

Potter, J. F.

J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987).
[PubMed]

Reber, C.

C. Reber, Upper Atmospheric Research Satellite (UARS) Mission, NASA/GSFC Report 430-1003-001, Greenbelt, MD (1985).

Remsberg, E. E.

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

Ridley, B. A.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

Robert, F. X.

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

Rodgers, C. D.

C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
[CrossRef]

Russell, J. M.

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984).
[CrossRef]

Schiff, H. I.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

Sharma, R. D.

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

Shelepin, L. A.

B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
[CrossRef]

Shettle, E. P.

S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).

Slanger, T. G.

T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
[CrossRef]

Solomon, S.

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

Stair, A. T.

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

Stephenson, J. C.

J. C. Stephenson, “Vibrational Relaxation of NO X2Π(υ = 1) in the Temperature Range 100–300 K,” J. Chem. Phys. 60, 4289 (1974).
[CrossRef]

Strobel, D. F.

D. F. Strobel, “Parameterization of the Atmospheric Heating Rate from 15 to 120 km due to O2 and O3 Absorption of Solar Radiation,” J. Geophys. Res. 83, 6225 (1978).
[CrossRef]

Takubo, Y.

T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

Thrush, B. A.

F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
[CrossRef]

Troe, J.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Watson, R. T.

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Welge, K. H.

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

Wilson, K. R.

G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972).
[CrossRef]

Zacharias, H.

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

Adv. At. Mol. Phys. (1)

R. B. Bernstein, R. D. Levine, “Role of energy in Reactive Molecular Scattering: an Information-Theoretic Approach,” Adv. At. Mol. Phys. 11, 215 (1975) and references therein.
[CrossRef]

Appl. Opt. (2)

Int. J. Quantum Chem. (1)

S. C. Farantos, J. N. Murrell, “Classical Dynamics of the O + ClO → Cl + O2 and Cl + O3 → ClO + O2 Reactions,” Int. J. Quantum Chem. 14, 659 (1978).
[CrossRef]

J. Atmos. Chem. (1)

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Calculations of the Temperature Dependence of the NO2 Photodissociation Coefficient in the Atmosphere,” J. Atmos. Chem. 1, 151 (1984).
[CrossRef]

J. Chem. Phys. (6)

B. D. Green, G. E. Caledonia, R. E. Murphy, F. X. Robert, “The Vibrational Relaxation of NO(υ = 1−7) by O2,” J. Chem. Phys. 76, 2441 (1982).
[CrossRef]

L. Doyenette, M. Margottin-Maclou, “Vibrational Relaxation of NO(υ = 1) by NO, N2, CO, HCl, CO2, and N2O from 300 to 600 K,” J. Chem. Phys. 84, 6668 (1986).
[CrossRef]

J. C. Stephenson, “Vibrational Relaxation of NO X2Π(υ = 1) in the Temperature Range 100–300 K,” J. Chem. Phys. 60, 4289 (1974).
[CrossRef]

T. G. Slanger, W. K. Bischel, M. J. Dyer, “Nascent NO Vibrational Distribution from 2485 Å NO2 Photodissociation,” J. Chem. Phys. 79, 2231 (1983).
[CrossRef]

G. E. Busch, K. R. Wilson, “Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation,” J. Chem. Phys. 56, 3626 (1972).
[CrossRef]

H. Zacharias, M. Geilhaupt, K. Meier, K. H. Welge, “Laser Photofragment Spectroscopy of the NO2 Dissociation at 337 nm. A Nonstatistical Decay Process,” J. Chem. Phys. 74, 218 (1981).
[CrossRef]

J. Geophys. Res. (6)

A. T. Stair, R. D. Sharma, R. M. Nadile, D. J. Baker, W. F. Greider, “Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment,” J. Geophys. Res. 90, 9763 (1985).
[CrossRef]

D. F. Strobel, “Parameterization of the Atmospheric Heating Rate from 15 to 120 km due to O2 and O3 Absorption of Solar Radiation,” J. Geophys. Res. 83, 6225 (1978).
[CrossRef]

J. A. Kaye, C. H. Jackman, “Concentrations and Uncertainties of Stratospheric Trace Gases Inferred from Limb Infrared Monitor of the Stratosphere Data, 1, Methodology and Application to OH and HO2,” J. Geophys. Res. 91, 1117 (1986).
[CrossRef]

J. C. Gille, J. M. Russell, “The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results,” J. Geophys. Res. 89, 5125 (1984).
[CrossRef]

C. D. Rodgers, R. L. Jones, J. J. Barnett, “Retrieval of Temperature and Composition from NIMBUS 7 SAMS Measurements,” J. Geophys. Res. 89, 5280 (1984).
[CrossRef]

S. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, J. M. Russell, “Evidence for Nonlocal Thermodynamic Equilibrium in the υ3 Mode of Mesospheric Ozone,” J. Geophys. Res. 91, 9865 (1986).
[CrossRef]

J. Photochem. (1)

C. B. McKendrick, C. Fotakis, R. J. Donovan, “Laser Photodissociation of NO2 at 248 nm and Production of NO(A2Σ+ → X2Π) Fluorescence,” J. Photochem. 20, 175 (1982).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, R. T. Watson, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 9, 295 (1980).
[CrossRef]

Mol. Phys. (1)

S. C. Farantos, J. N. Murrell, “A Classical Trajectory Study of the Reaction H + HCO → H2 + CO,” Mol. Phys. 40, 883 (1980).
[CrossRef]

Planet. Space Sci. (3)

B. F. Gordiets, M. N. Markov, L. A. Shelepin, “IR Radiation of the Upper Atmosphere,” Planet. Space Sci. 26, 933 (1978).
[CrossRef]

G. E. Caledonia, J. P. Kennealy, “NO Infrared Emission in the Upper Atmosphere,” Planet. Space Sci. 30, 1043 (1982).
[CrossRef]

T. Ogawa, “Excitation Processes of Infrared Atmospheric Emissions,” Planet. Space Sci. 24, 749 (1976).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

F. J. Lipscomb, R. G. W. Norrish, B. A. Thrush, “The Study of Energy Transfer by Kinetic Spectroscopy I. The Production of Vibrationally Excited Oxygen,” Proc. R. Soc. London Ser. A 233, 455 (1956).
[CrossRef]

Shitsuryo Bunseki (1)

T. Arikawa, K. Kanazawa, Y. Takubo, “Multiphoton Ionization of Nitric Oxide from Photodissociation of Nitrogen Dioxide,” Shitsuryo Bunseki 33, 131 (1985).

Other (5)

S. A. Clough, F. X. Kniezys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” Preprint in Proceedings, Sixth Conference of Atmospheric Radiation (American Meteorological Society, Williamsburg, VA, May 1986).

J. B. Kumer, J. F. Potter, J. L. Mergenthaler, “The Utilization of fascode to Calculate Vertical Flux and Flux Derivatives in a Plane Parallel Planetary Atmosphere: Application to Calculate Radiative Excitation of NO(υ = 1) in the Stratosphere,” Letter to be submitted to Appl. Opt. (1987).
[PubMed]

C. Reber, Upper Atmospheric Research Satellite (UARS) Mission, NASA/GSFC Report 430-1003-001, Greenbelt, MD (1985).

R. B. Bernstein, Chemical Dynamics Via Molecular Beam and Laser Techniques (Clarendon, Oxford, 1982).

W. B. DeMore et al., “Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling,” JPL Publ. 85-37 (JPL, Pasadena, CA, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Plot of fractional production of vibrational states of NO from the photolysis of NO2 as a function of wavelength calculated using the method described in the text. The lower abscissa shows the photon wavelength, while the upper abscissa shows energy in excess of the thermodynamic threshold for production of NO(υ = 0). Threshold wavelengths8 for production of vibrationally excited NO are indicated by arrows on the lower abscissa.

Fig. 2
Fig. 2

Plot of fractional production of vibrational states of NO from the photolysis of NO2 as a function of wavelength calculated using Eq. (6) in the text. The somewhat irregular spacing of these probabilities near 50 km is a function of the limited resolution of the UV radiation model of Strobel20 used in these calculations.

Tables (3)

Tables Icon

Table I Predicted NO(υ) Product State Distribution from (R2)

Tables Icon

Table II Predicted NO(v) Nascent Fractional Distributions f(1)v(z)

Tables Icon

Table III Comparison of Steady-State and Thermal [NO(v = 1)]/[NO(v = 0)] Ratios

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

[ M ( υ = 1 ) ] / [ M ( υ = 0 ) ] = exp ( Δ E / kT ) ,
NO 2 + h υ NO + O ;
O + NO 2 NO + O 2 ;
NO + O 3 NO 2 + O 2 ;
NO + ClO NO 2 + Cl
[ NO ( υ = 1 ) ] = P [ NO ( υ = 1 ) ] / ( k Q [ O 2 ] + A ) ,
[ NO ( υ = 0 ) ] = P ( NO ) / ( k R 3 [ O 3 ] ) ,
[ NO ( υ = 1 ) ] [ NO ( υ = 0 ) ] = P [ NO ( υ = 1 ) ] P ( NO ) * k R 3 k Q * [ O 3 ] [ O 2 ] .
P [ NO ( υ = 1 ) ] P ( NO ) = f υ > 0 ( 1 ) P ( 1 ) ( NO ) + f υ > 0 ( 2 ) P ( 2 ) ( NO ) P ( 1 ) ( NO ) + P ( 2 ) ( NO ) ,
f υ > 0 ( 1 ) ( z ) = λ max λ min σ ( λ ) ϕ ( λ ) F ( λ ; z ) n υ > 0 ( λ ) d λ λ max λ min σ ( λ ) ϕ ( λ ) F ( λ ; z ) d λ ,
R ( 1 ) = P ( 1 ) ( NO ) P ( 1 ) ( NO ) + P ( 2 ) ( NO ) = J 1 J 1 + k 2 [ O ] ,
R ( 2 ) = 1 R ( 1 ) .
ln ( P υ / P υ 0 ) = λ 0 λ 1 f υ ,
P υ 0 = J ( 2 J + 1 ) ρ tr ( E tot E υ E J ) υ J ( 2 J + 1 ) ρ tr ( E tot E υ E J ) ,
ln ( P υ / P υ 0 ) = λ 0 * λ 1 * υ .
H + HCO H 2 + CO ,
Cl + O 3 ClO + O 2 ,
r = ( [ NO ( υ = 1 ) ] / [ NO ( υ = 0 ) ] ) ss / ( [ NO ( υ = 1 ) ] / [ NO ( υ = 0 ) ] ) th
[ NO ( υ = 2 ) ] [ NO ( υ = 1 ) ] = P ( NO ( υ > 1 ) P ( NO ( υ > 0 ) k Q ( υ = 1 ) k Q ( υ = 2 ) ,
exp ( hc ν 0 / k T 1 ) = ( 1 + r ) exp ( hc ν 0 / k T ) ,
f υ ( 2 )
( [ NO ( υ = 1 ) ] [ NO ( υ = 0 ) ] ) ss
( [ NO ( υ = 1 ) ] [ NO ( υ = 0 ) ] ) th

Metrics