Abstract

The diffuse reflectance and depolarization properties of natural and powdered minerals were examined at 128 CO2 laser wavelengths. Powder reflectivity was classified into three regimes: (1) surface (reststrahlen); (2) low intermediate; and (3) bulk (Kubelka-Munk) remission from subsurface grains. Data are presented on NaCl, Al2O3, MgO, BaCO3, CaCO3, BaSO4, feldspar (NaAlSi3O8), and apatite [Ca5F(PO4)3]. Reduction of feldspar rocks to 210-μm grain size had little effect on their reflectance spectra. Kubelka-Munk-type behavior seems unlikely to dominate the reflectance spectra of natural surfaces. Albedos were measured for NaCl, sulfur, gold-plated sandpaper, graphite, and sandblasted aluminum.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.
  2. M. S. Shumate, S. Lindquist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982).
    [CrossRef] [PubMed]
  3. K. Asai, T. Igarashi, “Interference from Differential Reflectance of Moist Topographic Targets in CO2 Dial Ozone Measurement,” Appl. Opt. 23, 734 (1984).
    [CrossRef] [PubMed]
  4. G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969), Chap. 4.
    [CrossRef]
  5. J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981).
    [CrossRef]
  6. A. Gross, “Polarization of Reflected 10.6-μm Radiation from Sublimed Sulfur Targets,” Appl. Opt. 22, 3031 (1983).
    [CrossRef] [PubMed]
  7. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
    [CrossRef] [PubMed]
  8. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), p. 116–128.
  9. A. Hadni, “The Interaction of Infrared Radiation with Crystals,” in The Infrared Spectra of Minerals, V. C. Farmer, Ed. (Mineralogical Society, London, 1974), p. 27.
  10. R. K. Vincent, G. R. Hunt, “Infrared Reflectance from Mat Surfaces,” Appl. Opt. 7, 53 (1968).
    [CrossRef] [PubMed]
  11. For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973).
    [CrossRef]
  12. Ref. 4, p. 111, Eq. (37).
  13. S. D. Allen, J. A. Harrington, “Optical Absorption in KCl and NaCl at Infrared Laser Wavelengths,” Appl. Opt. 17, 1679 (1978).
    [CrossRef] [PubMed]
  14. B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).
  15. B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).
  16. V. C. Farmer, Ed., The Infrared Spectra of Minerals (Mineralogical Society, London, 1974), p. 240, Fig.12.7.
  17. P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
    [CrossRef]
  18. Ref. 16, p. 437, Fig. 18.
  19. Ref. 16, p. 369, Figs. 16.1 and 16.2.
  20. L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
    [CrossRef]
  21. I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

1984 (1)

1983 (2)

1982 (1)

1981 (1)

J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981).
[CrossRef]

1978 (1)

1977 (1)

P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
[CrossRef]

1973 (1)

I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

1968 (2)

R. K. Vincent, G. R. Hunt, “Infrared Reflectance from Mat Surfaces,” Appl. Opt. 7, 53 (1968).
[CrossRef] [PubMed]

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
[CrossRef]

1967 (2)

B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).

B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).

Allen, S. D.

Asai, K.

Born, M.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), p. 116–128.

Cabannes, F.

B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).

B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).

Chasmar, R. P.

For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973).
[CrossRef]

Dawson, P.

P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
[CrossRef]

Eberhardt, J. E.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

Edwards, J. G.

J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981).
[CrossRef]

Elkin, E. L.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
[CrossRef]

Eng, S. T.

Flamant, P. H.

Green, A. A.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

Gross, A.

Hadni, A.

A. Hadni, “The Interaction of Infrared Radiation with Crystals,” in The Infrared Spectra of Minerals, V. C. Farmer, Ed. (Mineralogical Society, London, 1974), p. 27.

Haner, D. A.

Hargreave, M. M.

P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
[CrossRef]

Harrington, J. A.

Haub, J. G.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

Huang, K.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), p. 116–128.

Hunt, G. R.

Igarashi, T.

Jones, F. E.

For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973).
[CrossRef]

Kavaya, M. J.

Kingsley, J. D.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
[CrossRef]

Kortum, G.

G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969), Chap. 4.
[CrossRef]

Kravitz, L. C.

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
[CrossRef]

Libov, V. S.

I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

Lindquist, S.

Lyon, R. J. P.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

Menzies, R. T.

Oppenheim, U. P.

Persson, U.

Piriou, B.

B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).

B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).

Pryor, A. W.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

Shaganov, I. I.

I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

Shumate, M. S.

Smith, P. A.

J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981).
[CrossRef]

Smith, R. A.

For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973).
[CrossRef]

Vincent, R. K.

Wilkinson, G. R.

P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
[CrossRef]

Appl. Opt. (6)

C. R. Acad. Sci. Ser. B (2)

B. Piriou, F. Cabannes, “Transmission infrared du Corindon,” C. R. Acad. Sci. Ser. B 264, 1110 (1967).

B. Piriou, F. Cabannes, “Absorption infrarouge de la Magnésie,” C. R. Acad. Sci. Ser. B 264, 630 (1967).

J. Chem. Phys. (1)

L. C. Kravitz, J. D. Kingsley, E. L. Elkin, “Raman and Infrared Studies of Coupled PO4−3 Vibrations,” J. Chem. Phys. 49, 4600 (1968).
[CrossRef]

J. Phys. E (1)

J. G. Edwards, P. A. Smith, “Properties of Some Diffusers for CO2 Lasers,” J. Phys. E 14, 1326 (1981).
[CrossRef]

Opt. Spectrosc. (1)

I. I. Shaganov, V. S. Libov, “Optical Characteristics of a Fluoroapatite Single Crystal in the Infrared,” Opt. Spectrosc. 35, 106 (1973).

Spectrochimica Acta Part A (1)

P. Dawson, M. M. Hargreave, G. R. Wilkinson, “Polarized IR Reflection, Absorption and Laser Raman Studies on a Single Crystal of BaSO4,” Spectrochimica Acta Part A 33, 83 (1977).
[CrossRef]

Other (9)

Ref. 16, p. 437, Fig. 18.

Ref. 16, p. 369, Figs. 16.1 and 16.2.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), p. 116–128.

A. Hadni, “The Interaction of Infrared Radiation with Crystals,” in The Infrared Spectra of Minerals, V. C. Farmer, Ed. (Mineralogical Society, London, 1974), p. 27.

For a conventional description see R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957), p. 381–385.The influence on lithological identification is discussed by L. M. Logan, G. R. Hunt, J. W. Salisbury, S. R. Balsamo, in “Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications,” J. Geophys. Res. 78, 4983 (1973).
[CrossRef]

Ref. 4, p. 111, Eq. (37).

V. C. Farmer, Ed., The Infrared Spectra of Minerals (Mineralogical Society, London, 1974), p. 240, Fig.12.7.

J. E. Eberhardt, A. A. Green, J. G. Haub, R. J. P. Lyon, A. W. Pryor, “Mid-Infrared Active and Passive Remote Sensing Systems and their Application to Geology and Mineral Exploration,” presented at International Geoscience and Remote Sensing Symposium, San Francisco, 31 Aug.–2 Sept., 1983.

G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969), Chap. 4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Apparatus: 1, collinear beams from CO2 and visible lasers; 2, 4-m mirror bringing the CO2 laser to a soft focus on the 6 × 4-mm deflecting mirror 3; 4, hexagonal mirror spinning at 50 Hz (the axis is rocked at 1 Hz so as to oscillate the beam's track on the samples); 5, eleven samples 3 cm wide separated by 2-cm Perspex strips (the samples are ∼10 cm in front of components 3 and 6); 6, 3-cm diam aperture; 7, Ge lens; 8, rotatable wire grid polarization selector; 9, HgCdTe photoconductive liquid nitrogen cooled detector; 10 visible detector to trigger data recording.

Fig. 2
Fig. 2

Idealized reflectivity spectrum of a powdered substance with a single ionic dispersion frequency and reststrahlen band. The position of the CO2 laser frequencies relative to the dispersion frequency is illustrated for the various minerals studied.

Fig. 3
Fig. 3

Parallel V and orthogonal H components of the reflectivity of NaCl powder (400–210 μm).

Fig. 4
Fig. 4

A, parallel V component of the reflectivity of Al2O3 powder; B, orthogonal H component of the reflectivity of ∼0.5-mm thickness of Al2O3 powder backed by a specular reflector illustrating the Christiansen filter effect; C, parallel V component of the reflectivity of MgO(×5).

Fig. 5
Fig. 5

Parallel V and orthogonal H components of the reflectivity of BaCO3 powder (grain size ≈ 10 μm).

Fig. 6
Fig. 6

(a) Natural barite (BaSO4) mineral: V and H (×10) components of reflectivity, (b) Powdered sample of same mineral (100–200-μm grain size): V and H (×5) components of reflectivity.

Fig. 7
Fig. 7

Parallel V and orthogonal H components of reflectivity of natural mineral and powdered samples of feldspar.

Fig. 8
Fig. 8

Parallel V and orthogonal H reflectivity of feldspar powders in four grain sizes (10–20, 20–45, 45–63, and 212-250 μm): Curve A, V at 9.64 μm (principal reststrahlen frequency), B, H (×5) at 9.64 μm(principal reststrahlen frequency), C, V at 11.2 μm (in K-M region); D, H (×5) at 11.2 μm (in K-M region).

Fig. 9
Fig. 9

(a) Natural apatite (Ca5F(PO4)3) mineral: V and H(×10) components of reflectivity, (b) Powdered sample of same mineral (≈10-μm grain size): V and H (×3) components of reflectivity.

Tables (3)

Tables Icon

Table I Albedos of Various Diffuse Reflectors at 10.59 μm

Tables Icon

Table II Calculated Volume Reflectivity

Tables Icon

Table III Reflectance Measurement on NaCl

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

0 90 I ( θ ) sin θ d θ ,
R = [ ( n 1 ) 2 + k 2 ] / [ ( n + 1 ) 2 + k 2 ] .
R υ = ( 1 x ) / ( 1 + x ) , where x 2 = α / ( α + 2 β ) .

Metrics