Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chýlek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285 (1977).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  3. G. J. Rosasco, H. S. Bennett, “International Field Resonance Structure: Implications for Optical Absorption and Scattering by Microscopic Particles,” J. Opt. Soc. Am. 68, 1242 (1978).
    [CrossRef]
  4. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978).
    [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803 (1981).
    [CrossRef] [PubMed]
  6. A. B. Pluchino, “Surface Waves and the Radiative Properties of Micron-Sized Particles,” Appl. Opt. 20, 2986 (1981).
    [CrossRef] [PubMed]
  7. J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
    [CrossRef] [PubMed]
  8. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984).
    [CrossRef]
  9. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
    [CrossRef]
  10. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
    [CrossRef]
  11. J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
    [CrossRef]
  12. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural Resonances Observed in the Fluorescence Emission from Small Spheres on Substrates,” Appl. Opt. 23, 1680 (1984).
    [CrossRef] [PubMed]
  13. J. B. Snow, S. Qian, R. K. Chang, “Stimulated Raman Scattering from Individual Water and Ethnanol Droplets of Morphology-Dependent Resonances,” Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  14. R. Thurn, M. Kiefer, “Structural Resonances Observed in the Raman Spectra of Optically Levitated Liquid Droplets,” Appl. Opt. 24, 1515 (1985).
    [CrossRef] [PubMed]
  15. P. W. Dusel, M. Kerker, D. D. Cooke, “Distribution of Absorption Centers within Irradiated Spheres,” J. Opt. Soc. Am. 69, 55 (1979).
    [CrossRef]
  16. R. K. Chang, Yale University: private communication (1985).

1985 (2)

1984 (2)

1982 (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
[CrossRef]

1981 (4)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

1979 (1)

1978 (2)

1977 (2)

P. Chýlek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285 (1977).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Barber, P. W.

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984).
[CrossRef]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
[CrossRef]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural Resonances Observed in the Fluorescence Emission from Small Spheres on Substrates,” Appl. Opt. 23, 1680 (1984).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Bennett, H. S.

Chang, R. K.

J. B. Snow, S. Qian, R. K. Chang, “Stimulated Raman Scattering from Individual Water and Ethnanol Droplets of Morphology-Dependent Resonances,” Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
[CrossRef]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

R. K. Chang, Yale University: private communication (1985).

Chýlek, P.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978).
[CrossRef]

P. Chýlek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285 (1977).
[CrossRef]

Conwell, P. R.

Cooke, D. D.

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Dusel, P. W.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Hill, S. C.

Kerker, M.

Kiefer, M.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978).
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978).
[CrossRef]

Owen, J. F.

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
[CrossRef]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Pluchino, A. B.

Qian, S.

Rosasco, G. J.

Rushforth, C. K.

Snow, J. B.

Thurn, R.

Aerosol Sci Tech. (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci Tech. 1, 293(1982).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Phys. Rev. A (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978).
[CrossRef]

Phys. Rev. Lett. (3)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Other (1)

R. K. Chang, Yale University: private communication (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Source function in equatorial plane of a sphere with size parameter x and refractive index N at the TE53,1 mode resonance condition. The source function is enhanced by a factor of ~106 over that of the incident plane wave in the forward and backward scattering directions. The arrow indicates the direction of incoming (unpolarized) radiation.

Fig. 2
Fig. 2

Source function of TE53,1 mode resonance along the axis of the particle and parallel to the direction of propagation. At resonance (top curve) the source function reaches values of the order of 106 close to the surface (defined by −1, +1 on horizontal coordinate axis) in backward and forward scattering directions. Slightly off resonance (middle curve) the peaks are reduced to ~104. Even more off resonance (bottom curve) forward and backward peaks are reduced below 102. At the same time the volume averaged value of the source function decreases from 2.45 × 104 at resonance to 1.14 off resonance. The forward peak in the source function outside the particle remains nearly unchanged at a value of ~102 in all considered cases.

Fig. 3
Fig. 3

As in Fig. 2 except for the TM53,1 mode resonance. The main difference is the additional sharp peak in the source function at the particle surface.

Fig. 4
Fig. 4

Comparison of TE40,1, TE40,2, and TE40,3 source functions at resonance conditions. The main feature is that the TE40,1 resonance exhibits l high peaks. The height of peaks decreases with increasing order of l.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( r , θ , ϕ ) = E ( r , θ , ϕ ) · E ( r , θ , ϕ ) E 0 · E 0 ,
n = 2 ( π 1 ) π f x .

Metrics