Abstract

The grinding of aspheric molds in hard materials on a CNC lathe is discussed, as well as a stylus technique to measure the shape of these molds. Optical measurements of N.A. = 0.45 lenses replicated with these molds give a rms OPD of <0.030 wavelength at 780 nm.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Smid, “Design and Production Technology of Replicated Aspherical Objective Lens for Optical Disk Systems,” J. Opt. Soc. Am. A 1, 1238 (1984).
  2. T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).
  3. H. de Lang, G. Bouwhuis, “Displacement Measurements with a Laser Interferometer,” Philips Tech. Rev. 30, 160 (1969).
  4. J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).
  5. J. H. Bruning et al., “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  6. J. Schwider et al., “Digital Wave-Front Measuring Interferometry: Some Systematic Error Sources,” Appl. Opt. 22, 3421 (1983).
    [CrossRef] [PubMed]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 9.
  8. To obtain the magnitude of the Seidel aberrations from the corresponding Zernike polynomials, the coefficient of the polynomial must be multiplied by 6/2, 3, or 2 for spherical aberration, coma, or astigmatism, respectively.

1984

A. Smid, “Design and Production Technology of Replicated Aspherical Objective Lens for Optical Disk Systems,” J. Opt. Soc. Am. A 1, 1238 (1984).

1983

1980

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

1974

1969

H. de Lang, G. Bouwhuis, “Displacement Measurements with a Laser Interferometer,” Philips Tech. Rev. 30, 160 (1969).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 9.

Bouwhuis, G.

H. de Lang, G. Bouwhuis, “Displacement Measurements with a Laser Interferometer,” Philips Tech. Rev. 30, 160 (1969).

Bruning, J. H.

de Lang, H.

H. de Lang, G. Bouwhuis, “Displacement Measurements with a Laser Interferometer,” Philips Tech. Rev. 30, 160 (1969).

Dil, J. G.

J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Driessen, J. C.

J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Gijsbers, T. G.

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

Mesman, W.

J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Schwider, J.

Smid, A.

A. Smid, “Design and Production Technology of Replicated Aspherical Objective Lens for Optical Disk Systems,” J. Opt. Soc. Am. A 1, 1238 (1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 9.

Appl. Opt.

J. Opt. Soc. Am. A

A. Smid, “Design and Production Technology of Replicated Aspherical Objective Lens for Optical Disk Systems,” J. Opt. Soc. Am. A 1, 1238 (1984).

Philips Tech. Rev.

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

H. de Lang, G. Bouwhuis, “Displacement Measurements with a Laser Interferometer,” Philips Tech. Rev. 30, 160 (1969).

Proc. Soc. Photo-Opt. Instrum. Eng.

J. G. Dil, W. Mesman, J. C. Driessen, “High-Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 9.

To obtain the magnitude of the Seidel aberrations from the corresponding Zernike polynomials, the coefficient of the polynomial must be multiplied by 6/2, 3, or 2 for spherical aberration, coma, or astigmatism, respectively.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the Colath: B, bedplate; MS, main spindle with vane motor V; TH, toolholder; H, linear hydraulic motors for displacing the headstock carriage in the z direction and the toolholder carriage in the x direction; S V, hydraulic servo valve with supply and return flow pipes for the oil; L, He–Ne (Zeeman) laser; I, interferometer; RR, retroreflector moving with the carriage; R, receiver (signal detector). In the actual machine the retroreflectors are in line with the centers of the tool and the workpiece.

Fig. 2
Fig. 2

Measuring geometry of the stylus instrument: CP1,2 contacting probes; AS, asphere under test; RS, reference sphere; R, rotary table.

Fig. 3
Fig. 3

Construction of the stylus instrument: B1–3, Zerodur bars; PT, Invar position tables; B, bronze housing for air-bearing rotary table R; AE, angle encoder.

Fig. 4
Fig. 4

Measurement of an aspheric mold on the stylus instrument. The x,z coordinates are the same as in Fig. 1 of the numerical lathe. 4 mm in the x direction corresponds to a scanning angle of 65°.

Fig. 5
Fig. 5

Twyman-Green interferogram of a replicated lens with N.A. = 0.45, measured in transmission.

Fig. 6
Fig. 6

OPD map of a replicated lens, peak–valley OPD (p–v) = 139 mλ, rms OPD = 17 mλ single-pass, N.A. = 0.45, λ = 780 nm. (In the Fig., ML stands for mλ.)

Fig. 7
Fig. 7

(a) Histogram of the standard deviation of the wave fronts of fifty lenses; (b) histogram of the spherical aberration; (c) coma; and (d) astigmatism of the same series of lenses (given are the coefficients of the Zernike polynomials).

Tables (1)

Tables Icon

Table I Parameters Derived from the Measured Wave Front of the Replicated Lens of Fig. 5

Metrics