Abstract

An explanation is put forth for the observed nonlinearity in the red spectral region of the response of silicon photodiodes. Experiments are described to support the explanation; and the results, implications, and precautions indicated for the use of these diodes are given. Correlation of nonlinearity with spatial nonuniformity of response is demonstrated.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Budde, Appl. Opt. 18, 1555 (1979).
    [CrossRef] [PubMed]
  2. A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.
  3. The mention of a commercial product is provided for completeness of description of the experimental procedure and constitutes neither an endorsement by NBS nor the implication of optimum performance.
  4. E. F. Zalewski, J. Geist, Appl. Opt. 19, 1214 (1980).
    [CrossRef] [PubMed]
  5. J. Geist, A. J. D. Farmer, P. J. Martin, F. J. Wilkinson, S. J. Collocott, Appl. Opt. 21, 1130 (1982).
    [CrossRef] [PubMed]
  6. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), pp. 342, 136, and 140.
  7. H. A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979).
    [CrossRef]
  8. Ref. 6, p. 161.
  9. M. A. Lind, in Proceedings, Electro-Optical Systems Design Conference (Industrial & Scientific Conference Management, Chicago, 1976), p. 55.
  10. J. Geist, E. F. Zalewski, A. R. Schaefer, Appl. Opt. 19, 3795 (1980).
    [CrossRef] [PubMed]

1982 (1)

1980 (2)

1979 (2)

W. Budde, Appl. Opt. 18, 1555 (1979).
[CrossRef] [PubMed]

H. A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979).
[CrossRef]

Budde, W.

Collocott, S. J.

Farmer, A. J. D.

Geist, J.

J. Geist, A. J. D. Farmer, P. J. Martin, F. J. Wilkinson, S. J. Collocott, Appl. Opt. 21, 1130 (1982).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, A. R. Schaefer, Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

E. F. Zalewski, J. Geist, Appl. Opt. 19, 1214 (1980).
[CrossRef] [PubMed]

A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.

Grove, A. S.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), pp. 342, 136, and 140.

Lind, M. A.

M. A. Lind, in Proceedings, Electro-Optical Systems Design Conference (Industrial & Scientific Conference Management, Chicago, 1976), p. 55.

A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.

Martin, P. J.

Redfield, D.

H. A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979).
[CrossRef]

Schaefer, A. R.

J. Geist, E. F. Zalewski, A. R. Schaefer, Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.

Weakliem, H. A.

H. A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979).
[CrossRef]

Wilkinson, F. J.

Zalewski, E. F.

E. F. Zalewski, J. Geist, Appl. Opt. 19, 1214 (1980).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, A. R. Schaefer, Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.

Appl. Opt. (4)

J. Appl. Phys. (1)

H. A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979).
[CrossRef]

Other (5)

Ref. 6, p. 161.

M. A. Lind, in Proceedings, Electro-Optical Systems Design Conference (Industrial & Scientific Conference Management, Chicago, 1976), p. 55.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), pp. 342, 136, and 140.

A. R. Schaefer, E. F. Zalewski, M. A. Lind, J. Geist, in Proceedings, Electro-Optics/Laser 77 Conference and Exposition (Industrial & Scientific Conference Management, Chicago, 1977), p. 459.

The mention of a commercial product is provided for completeness of description of the experimental procedure and constitutes neither an endorsement by NBS nor the implication of optimum performance.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Extension of depletion region in a p+n Si photodiode with application of reverse bias. This figure was previously published by Geist et al. in Ref. 10.

Fig. 2
Fig. 2

Typical increase in quantum efficiency due to decrease in bulk recombination loss at 800 nm for a good Si photodiode. This figure was previously published by Geist et al. in Ref. 10.

Fig. 3
Fig. 3

Increase in quantum efficiency due to application of reverse bias as a function of photocurrent for a supralinear photodiode at 647 nm.

Fig. 4
Fig. 4

Block diagram for present ac/dc linearity measurement system.

Fig. 5
Fig. 5

System ac and dc: ac nonlinearity ratio K(I) − 1 as a function of photocurrent for the supralinear photodiode of Fig. 3 at 647 nm.

Fig. 6
Fig. 6

Comparison of change in quantum efficiency of the supralinear Si photodiode of Fig. 3 as a function of photocurrent as measured by both reverse bias and ac/dc linearity techniques.

Fig. 7
Fig. 7

Relative spatial nonuniformity of response of the supralinear Si photodiode of Fig. 3.

Fig. 8
Fig. 8

Improvement in relative spatial nonuniformity of response of the supralinear Si photodiode of Fig. 3. Decrease in nonuniformity is caused by applying a reverse bias to the photodiode depicted in Fig. 7.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( λ ) = o ( λ ) R ( λ ) 1 [ 1 o ( λ ) ] [ 1 R ( λ ) ] .
R ( λ ) = λ ( λ ) h c [ 1 ρ ( λ ) ] ,
L ( Φ ) = I ( Φ + α Φ ) I ( Φ ) I ( α Φ ) I ( O ) = n = 1 ( d n I ( Φ ) / d Φ n ) ( α Φ ) n / n ! n = 1 ( d n I ( O ) / d Φ n ) ( α Φ ) n / n ! .
K ( I ) = 1 I ( O ) ( d Φ / d I ) 3 × [ ( d Φ / d I ) 2 ( d 2 Φ d I 2 ) α Φ / 2 + 1 + I ( O ) K [ I ( O ) α Φ / ( 2 α ) + ] ,
( I ) I 0 for I < I 0 ,
( I ) I 0 [ 1 + A ln ( I / I 0 ) ] for I 0 < I < I 1 ,
( I ) I 0 [ 1 + A ln ( I 1 / I 0 ) ] for I 1 < I .

Metrics