Abstract

In this paper we present a new method for estimating the bandwidth of multimode optical fibers based on the frequency correlation function of the speckle patterns generated by the interference of fiber modes. This technique, which does not require a pulse or signal generator, can be utilized to estimate the bandwidth of a multimode fiber using a relatively short length of fiber. By applying this method to a test fiber we obtained a bandwidth of ~36 MHz · km which is in relatively good agreement with the ~44-MHz · km bandwidth measured by a conventional pulsed technique.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).
  2. D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972).
    [CrossRef]
  3. C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.
  4. J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
    [CrossRef]
  5. L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980).
    [CrossRef]
  6. L. G. Cohen, Appl. Opt. 14, 1351 (1975).
    [CrossRef] [PubMed]
  7. T. Tanifuji, M. Ikeda, Appl. Opt. 16, 2175 (1977).
    [CrossRef] [PubMed]
  8. T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978).
    [CrossRef]
  9. K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978).
    [CrossRef]
  10. L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
    [CrossRef]
  11. D. Gloge, E. L. Chinnock, D. H. Ring, Appl. Opt. 11, 1534 (1972).
    [CrossRef] [PubMed]
  12. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. A. Arnaud, Appl. Opt. 19, 3749 (1980).
    [CrossRef] [PubMed]
  13. B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
    [CrossRef]
  14. R. E. Epworth, “The Phenomenon of Modal Noise in Analogue and Digital Optical Fibre Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.
  15. E. G. Rawson, J. W. Goodman, R. E. Norton, J. Opt. Soc. Am. 70, 968 (1980).
    [CrossRef]
  16. A. Weierholt, Norwegian Institute of Technology; private communication.

1980 (3)

L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980).
[CrossRef]

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. A. Arnaud, Appl. Opt. 19, 3749 (1980).
[CrossRef] [PubMed]

E. G. Rawson, J. W. Goodman, R. E. Norton, J. Opt. Soc. Am. 70, 968 (1980).
[CrossRef]

1978 (2)

T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978).
[CrossRef]

K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

1977 (2)

L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
[CrossRef]

T. Tanifuji, M. Ikeda, Appl. Opt. 16, 2175 (1977).
[CrossRef] [PubMed]

1976 (1)

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

1975 (2)

B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
[CrossRef]

L. G. Cohen, Appl. Opt. 14, 1351 (1975).
[CrossRef] [PubMed]

1972 (2)

D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972).
[CrossRef]

D. Gloge, E. L. Chinnock, D. H. Ring, Appl. Opt. 11, 1534 (1972).
[CrossRef] [PubMed]

Arnaud, J. A.

Astle, H. W.

L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
[CrossRef]

Chinnock, E. I.

D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972).
[CrossRef]

Chinnock, E. L.

Cohen, L. G.

L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
[CrossRef]

L. G. Cohen, Appl. Opt. 14, 1351 (1975).
[CrossRef] [PubMed]

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.

Colombeau, B.

Crosignani, B.

B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
[CrossRef]

Daikoku, K.

K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

Daino, B.

B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
[CrossRef]

Dannwolf, J. W.

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

Di Porto, P.

B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
[CrossRef]

Epworth, R. E.

R. E. Epworth, “The Phenomenon of Modal Noise in Analogue and Digital Optical Fibre Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.

French, W. G.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.

Froehly, C.

Gloge, D.

D. Gloge, E. L. Chinnock, D. H. Ring, Appl. Opt. 11, 1534 (1972).
[CrossRef] [PubMed]

D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972).
[CrossRef]

Goodman, J. W.

Gottfried, S.

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

Ikeda, M.

T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978).
[CrossRef]

T. Tanifuji, M. Ikeda, Appl. Opt. 16, 2175 (1977).
[CrossRef] [PubMed]

Jeunhomme, L.

L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980).
[CrossRef]

Kaminow, I. P.

L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
[CrossRef]

Lamouler, P.

L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980).
[CrossRef]

Lin, C.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.

Marcuse, D.

D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).

Norton, R. E.

Piasecki, J.

Presby, H. M.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.

Rawson, E. G.

Ring, D. H.

Sargent, G. A.

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

Strum, R.

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

Sugimura, A.

K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

Tanifuji, T.

T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978).
[CrossRef]

T. Tanifuji, M. Ikeda, Appl. Opt. 16, 2175 (1977).
[CrossRef] [PubMed]

Vampouille, M.

Weierholt, A.

A. Weierholt, Norwegian Institute of Technology; private communication.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977).
[CrossRef]

B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975).
[CrossRef]

Electron. Lett. (2)

T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978).
[CrossRef]

K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Quantum Electron. (1)

L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980).
[CrossRef]

Other (4)

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.

R. E. Epworth, “The Phenomenon of Modal Noise in Analogue and Digital Optical Fibre Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.

A. Weierholt, Norwegian Institute of Technology; private communication.

D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Planar waveguide of length L and width W, illustrating the 2K + 1 regions of width λgL/W resolvable by an aperture of width W. The complement of Өm is the critical angle for total internal reflection.

Fig. 2
Fig. 2

Apparatus used to measure the frequency correlation function for two different types of step-index fiber.

Fig. 3
Fig. 3

Frequency correlation function (FCF) curves obtained for two different types of step-index fiber (using the system shown in Fig. 2): (a) fiber 1, Siecor fiber with N.A. ≈ 0.28, 100-μm core diam, and L ≈ 3 m; (b) fiber 2, Corning Fat Fiber with N.A. ≈ 0.31, 100-μm core diam, and L ≈ 3.3 m.

Fig. 4
Fig. 4

Minimum required source tunability for step-index fibers as a function of fiber length with fiber bandwidth as a parameter.

Fig. 5
Fig. 5

Frequency correlation function (FCF) curves of fiber 2 for four different focusing cases: (a) focused speckle pattern; (b), (c), and (d) misfocused speckle patterns (in the order of increasing degree of misfocusing).

Fig. 6
Fig. 6

Output pulse waveforms of fiber 1: (a) L ≈ 0.7 m; (b) L ≈ 500 m.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ρ ( Δ ν ) [ C ( y ) / y ] 2 .
C ( y ) = 0 y cos ( π t 2 / 2 ) d t
y = [ 2 L ( N . A . ) 2 Δ ν / c n ] 1 / 2 .
Δ ν 3 dB 0.58 [ c n / L ( N . A . ) 2 ] .
l k = L + k 2 λ g 2 L 2 W 2 k λ g x W + x 2 2 L .
I o ( t ) = k = K K δ ( t t k ) ,
t k = ( l k + δ k ( x ) ] n / c ,
| H inc ( f ) ¯ | | C ( y ) / y | ,
y = [ 2 L ( N . A . ) 2 f / c n ] 1 / 2 ,
f ( x ) ( 1 / W d ) W d / 2 W d / 2 f ( x ) d x .
| H inc ( f ) ¯ | 2 ρ ( f ) .
f 3 dB 0.83 [ c n / L ( N . A . ) 2 ] .
( f 3 dB ) inc ( Δ ν 3 dB ) FCF = constant ( 1.43 , for the assumed model ) .
c ( Δ ν ) = I ( x , ν ) I ( x , ν + Δ ν ) ¯ I ( x , ν ) ¯ I ( x , ν + Δ ν ) ¯ .
ρ ( Δ ν ) c ( Δ ν ) c ( O ) .
H inc ( f ) = 1 ( 2 K + 1 ) k = K K exp ( i 2 π t k f ) ,
H inc ( f ) = 1 ( 2 K + 1 ) exp [ i ( 2 π n c ) ( L + x 2 2 L ) f ] × k = K K exp [ i ( 2 π n c ) ( k 2 λ g 2 L 2 W 2 k λ g x W ) f ] exp [ i ϕ k ( x ) f ν ] ,
H inc ( f ) ¯ = 1 ( 2 K + 1 ) exp [ i ( 2 π n c ) ( L + x 2 2 L ) f ] sinc ( f ν ) × k = K K exp [ i ( 2 π n c ) ( k 2 λ g 2 L 2 W 2 k λ g x W ) f ] .
exp [ i ϕ k ( x ) f ν ] ¯ = sin ( π f / ν ) ( π f / ν ) sinc ( f ν ) .
H inc ( f ) ¯ 1 ( 2 K + 1 ) exp [ i ( 2 π n L c ) f ] sinc ( f ν ) × k = K K exp [ i ( 2 π n L c ) ( k 2 λ g 2 2 W 2 ) f ] .
H inc ( f ) ¯ exp [ i ( 2 π n L c ) f ] sinc ( f ν ) × 1 / 2 1 / 2 exp [ i 4 π L f ( N . A . ) 2 s 2 / c n ] d s ,
| H inc ( f ) ¯ | | [ sinc ( f ν ) ] [ C ( y ) / y ] | ,
| H inc ( f ) ¯ | | [ C ( y ) / y ] | .

Metrics