Abstract

Absorption and extinction due to the smoke produced by the atmospheric combustion of diesel fuel have been measured using a CO2 laser spectrophone at a wavelength of 10.6 μm. The absorption coefficient normalized to the aerosol mass density is 0.84 ± 0.076 m2/g, and the total scattering coefficient (the difference between the extinction and absorption values) normalized in the same way is 0.15 ± 0.014 m2/g. The largely fibrous aerosol was found to be 80% carbon, with most of the remainder consisting of hydrocarbons which are comparatively transparent at 10.6 μm and physically resemble the unburned fuel. The normalized coefficients of this study approximate those of diesel automobile effluents. This is not surprising since the aerosol composition and morphology appear to be similar.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.
  2. S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800186, 1980.
  3. T. Ahmad, Society of Automotive Engineers, Paper No. 800189, 1980.
  4. F. R. Faxvog, D. M. Roessler, J. Appl. Phys. 50, 7880 (1979).
    [CrossRef]
  5. D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.
  6. C. W. Bruce, R. G. Pinnick, Appl. Opt. 16, 1762 (1977).
    [CrossRef] [PubMed]
  7. C. W. Bruce, Y. P. Yee, S. G. Jennings, Appl. Opt. 19, 1893 (1980).
    [CrossRef] [PubMed]
  8. C. W. Bruce, “Development of Spectrophones for CW and Pulsed Laser Radiation Sources,” U.S. Army Electronics Command Technical Report 5802 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1976).
  9. G. A. Eiceman, New Mexico State U., Las Cruces; unpublished communication.
  10. D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 69, 1699 (1979).
    [CrossRef]
  11. V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.
  12. R. G. Pinnick, U.S. Army Atmospheric Sciences Laboratory; private communication. Provided particle counterbased measurements of mass density.

1981 (1)

V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.

1980 (1)

1979 (2)

D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 69, 1699 (1979).
[CrossRef]

F. R. Faxvog, D. M. Roessler, J. Appl. Phys. 50, 7880 (1979).
[CrossRef]

1977 (1)

Ahmad, T.

T. Ahmad, Society of Automotive Engineers, Paper No. 800189, 1980.

Amann, C. A.

C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.

Bruce, C. W.

C. W. Bruce, Y. P. Yee, S. G. Jennings, Appl. Opt. 19, 1893 (1980).
[CrossRef] [PubMed]

C. W. Bruce, R. G. Pinnick, Appl. Opt. 16, 1762 (1977).
[CrossRef] [PubMed]

C. W. Bruce, “Development of Spectrophones for CW and Pulsed Laser Radiation Sources,” U.S. Army Electronics Command Technical Report 5802 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1976).

Dugin, V. P.

V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.

Eiceman, G. A.

G. A. Eiceman, New Mexico State U., Las Cruces; unpublished communication.

Faxvog, F. R.

D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 69, 1699 (1979).
[CrossRef]

F. R. Faxvog, D. M. Roessler, J. Appl. Phys. 50, 7880 (1979).
[CrossRef]

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.

Jennings, S. G.

MacDonald, J. S.

S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800186, 1980.

C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.

Pinnick, R. G.

C. W. Bruce, R. G. Pinnick, Appl. Opt. 16, 1762 (1977).
[CrossRef] [PubMed]

R. G. Pinnick, U.S. Army Atmospheric Sciences Laboratory; private communication. Provided particle counterbased measurements of mass density.

Plee, S. L.

C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.

S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800186, 1980.

Roessler, D. M.

F. R. Faxvog, D. M. Roessler, J. Appl. Phys. 50, 7880 (1979).
[CrossRef]

D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 69, 1699 (1979).
[CrossRef]

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.

Smith, G. W.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.

Stevenson, R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.

Stivender, D. L.

C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.

Toporkov, Yu. G.

V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.

Yee, Y. P.

Zadorina, N. V.

V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.

Appl. Opt. (2)

Atmos. Ocean. Phys. (1)

V. P. Dugin, Yu. G. Toporkov, N. V. Zadorina, Atmos. Ocean. Phys. 17, 728 (1981); Engl. ed.

J. Appl. Phys. (1)

F. R. Faxvog, D. M. Roessler, J. Appl. Phys. 50, 7880 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (7)

R. G. Pinnick, U.S. Army Atmospheric Sciences Laboratory; private communication. Provided particle counterbased measurements of mass density.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, Society of Automotive Engineers, Paper No. 3467, 1980.

C. A. Amann, D. L. Stivender, S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800251, 1980.

S. L. Plee, J. S. MacDonald, Society of Automotive Engineers, Paper No. 800186, 1980.

T. Ahmad, Society of Automotive Engineers, Paper No. 800189, 1980.

C. W. Bruce, “Development of Spectrophones for CW and Pulsed Laser Radiation Sources,” U.S. Army Electronics Command Technical Report 5802 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1976).

G. A. Eiceman, New Mexico State U., Las Cruces; unpublished communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Major components of the integrated field spectrophone. The laser system contains the optical feedback, electronics for line selection, and a stabilization and acoustically isolated beam chopper. The spectrophone tube includes acoustical filters and a resonant subcavity with microphone. A calorimeter terminates a low-pass (high inertance) filter tube.

Fig. 2
Fig. 2

Response of an acoustic filter set used with the spectrophone for both field and laboratory measurements.

Fig. 3
Fig. 3

Two spectrophones mounted in instrumentation structure for field measurements of IR optical effects of diesel smoke. Horizontal spectrophone (a) is oriented into the wind. Vertically oriented system (b) provides comparison. A number of other gaseous and particulate measurement systems are also mounted on the open-frame aluminum structure.

Fig. 4
Fig. 4

Measurements on the smoke of diesel fuel, 1 June 1982. Instruments were located ~12 m above the source, where the plume width is ~7 m. Approximately 400 kg of fuel was burned over a base having a width of ~2.6 m. Absorption, extinction coefficients, and gaseous carbon dioxide concentration are plotted continuously with time. Concentration of carbon dioxide is referenced to the ambient atmospheric value.

Fig. 5
Fig. 5

Particles introduced into the chamber (a) through the transfer tube, which has the effect of filtering out the agglomerates, and (b) by direct coupling. The concentration of agglomerates in (b) is considerably higher than the norm to illustrate their varying form. White bars (a) represent 10 μm, and the scale is the same for both photographs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α / ρ = 0.84 ± 0.076 m 2 / g , / ρ = 0.99 ± 0.12 m 2 / g , s t / = 0.15 ± 0.014

Metrics