Abstract

An intracavity double-resonance technique has been used to study three K-type doublets in the portion of the CH3OH torsional–rotational–vibrational level structure which can be pumped by the CO2 10R(38) laser line to produce submillimeter (SMM) laser action. Measurements of the doublet spacings yield a value of S(4) = 2.1(1) × 10−9 for the first excited state of the ν8 vibrational mode. Measurements of the pressure and rf power dependence of the amplitude and halfwidth of the double-resonance signals produce a new evaluation of the rotational relaxation rate and other useful information pertinent to SMM laser dynamics.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shimoda, “Laser Spectroscopy of Atoms and Molecules,” in Topics in Applied Physics, H. Walther, Ed. (Springer, New York, 1976), Vol. 2, p. 197.
    [CrossRef]
  2. T. Oka, in Frontiers in Laser SpectroscopyR. Balian et al., Eds. (North-Holland, Amsterdam, 1977), Vol. 2, p. 531.
  3. D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
    [CrossRef]
  4. E. Arimondo, M. Inguscio, A. Moretti, M. Pellegrino, F. Strumia, Opt. Lett. 5, 496 (1980).
    [CrossRef] [PubMed]
  5. J. O. Henningsen, IEEE J. Quantum Electron. QE-13, 435 (1977).
    [CrossRef]
  6. Y. Y. Kwan, D. M. Dennison, J. Mol. Spectrosc. 43, 291 (1972).
    [CrossRef]
  7. M. M. T. Loy, P. A. Roland, Rev. Sci. Instrum. 48, 554 (1977).
    [CrossRef]
  8. E. V. Ivash, D. M. Dennison, J. Chem. Phys. 21, 1804 (1953).
    [CrossRef]
  9. R. M. Lees, S. S. Haque, Can. J. Phys. 52, 2250 (1974).
  10. T. Oka, Adv. Mol. Phys. 9, 127 (1973).
    [CrossRef]
  11. K. Takagi, J. Mol. Spectrosc. 75, 97 (1979).
    [CrossRef]
  12. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  13. J. Gilbert, Ph.D. Dissertation, U. Laval, Quebec (1968).
  14. J. R. Tucker, in Conference Digest, International Conference on SMM Waves and Their Applications, Atlanta, IEEE Cat. 74 CH0856-5MTT (1974), p. 17.
  15. H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
    [CrossRef]

1980 (1)

1979 (1)

K. Takagi, J. Mol. Spectrosc. 75, 97 (1979).
[CrossRef]

1978 (1)

D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
[CrossRef]

1977 (2)

J. O. Henningsen, IEEE J. Quantum Electron. QE-13, 435 (1977).
[CrossRef]

M. M. T. Loy, P. A. Roland, Rev. Sci. Instrum. 48, 554 (1977).
[CrossRef]

1975 (1)

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

1974 (1)

R. M. Lees, S. S. Haque, Can. J. Phys. 52, 2250 (1974).

1973 (1)

T. Oka, Adv. Mol. Phys. 9, 127 (1973).
[CrossRef]

1972 (1)

Y. Y. Kwan, D. M. Dennison, J. Mol. Spectrosc. 43, 291 (1972).
[CrossRef]

1953 (1)

E. V. Ivash, D. M. Dennison, J. Chem. Phys. 21, 1804 (1953).
[CrossRef]

Arimondo, E.

Bluyssen, H. J. A.

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

Dangoisse, D.

D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
[CrossRef]

Deldalle, A.

D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
[CrossRef]

Dennison, D. M.

Y. Y. Kwan, D. M. Dennison, J. Mol. Spectrosc. 43, 291 (1972).
[CrossRef]

E. V. Ivash, D. M. Dennison, J. Chem. Phys. 21, 1804 (1953).
[CrossRef]

Gilbert, J.

J. Gilbert, Ph.D. Dissertation, U. Laval, Quebec (1968).

Glorieux, P.

D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
[CrossRef]

Haque, S. S.

R. M. Lees, S. S. Haque, Can. J. Phys. 52, 2250 (1974).

Henningsen, J. O.

J. O. Henningsen, IEEE J. Quantum Electron. QE-13, 435 (1977).
[CrossRef]

Inguscio, M.

Ivash, E. V.

E. V. Ivash, D. M. Dennison, J. Chem. Phys. 21, 1804 (1953).
[CrossRef]

Kwan, Y. Y.

Y. Y. Kwan, D. M. Dennison, J. Mol. Spectrosc. 43, 291 (1972).
[CrossRef]

Lees, R. M.

R. M. Lees, S. S. Haque, Can. J. Phys. 52, 2250 (1974).

Loy, M. M. T.

M. M. T. Loy, P. A. Roland, Rev. Sci. Instrum. 48, 554 (1977).
[CrossRef]

McIntosh, R. A.

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

Moretti, A.

Oka, T.

T. Oka, Adv. Mol. Phys. 9, 127 (1973).
[CrossRef]

T. Oka, in Frontiers in Laser SpectroscopyR. Balian et al., Eds. (North-Holland, Amsterdam, 1977), Vol. 2, p. 531.

Pellegrino, M.

Roland, P. A.

M. M. T. Loy, P. A. Roland, Rev. Sci. Instrum. 48, 554 (1977).
[CrossRef]

Shimoda, K.

K. Shimoda, “Laser Spectroscopy of Atoms and Molecules,” in Topics in Applied Physics, H. Walther, Ed. (Springer, New York, 1976), Vol. 2, p. 197.
[CrossRef]

Strumia, F.

Takagi, K.

K. Takagi, J. Mol. Spectrosc. 75, 97 (1979).
[CrossRef]

Tucker, J. R.

J. R. Tucker, in Conference Digest, International Conference on SMM Waves and Their Applications, Atlanta, IEEE Cat. 74 CH0856-5MTT (1974), p. 17.

Van Etteger, A. F.

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

Wyder, P.

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Adv. Mol. Phys. (1)

T. Oka, Adv. Mol. Phys. 9, 127 (1973).
[CrossRef]

Can. J. Phys. (1)

R. M. Lees, S. S. Haque, Can. J. Phys. 52, 2250 (1974).

IEEE J. Quantum Electron. (2)

J. O. Henningsen, IEEE J. Quantum Electron. QE-13, 435 (1977).
[CrossRef]

H. J. A. Bluyssen, R. A. McIntosh, A. F. Van Etteger, P. Wyder, IEEE J. Quantum Electron. QE-11, 341 (1975).
[CrossRef]

J. Chem. Phys. (2)

E. V. Ivash, D. M. Dennison, J. Chem. Phys. 21, 1804 (1953).
[CrossRef]

D. Dangoisse, A. Deldalle, P. Glorieux, J. Chem. Phys. 69, 5201 (1978).
[CrossRef]

J. Mol. Spectrosc. (2)

Y. Y. Kwan, D. M. Dennison, J. Mol. Spectrosc. 43, 291 (1972).
[CrossRef]

K. Takagi, J. Mol. Spectrosc. 75, 97 (1979).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. M. T. Loy, P. A. Roland, Rev. Sci. Instrum. 48, 554 (1977).
[CrossRef]

Other (5)

K. Shimoda, “Laser Spectroscopy of Atoms and Molecules,” in Topics in Applied Physics, H. Walther, Ed. (Springer, New York, 1976), Vol. 2, p. 197.
[CrossRef]

T. Oka, in Frontiers in Laser SpectroscopyR. Balian et al., Eds. (North-Holland, Amsterdam, 1977), Vol. 2, p. 531.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

J. Gilbert, Ph.D. Dissertation, U. Laval, Quebec (1968).

J. R. Tucker, in Conference Digest, International Conference on SMM Waves and Their Applications, Atlanta, IEEE Cat. 74 CH0856-5MTT (1974), p. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

CH3OH laser transitions pumped by the 10R(38) CO2 laser line at 986.567 cm−1.

Fig. 2
Fig. 2

Experimental setup: a, detector; b, lock-in amplifier; c, integrator; d, limiting amplifier, e, HV amplifier; f, pulse generator; g, Golay cell; h, lock-in amplifier; i, recorder; j, frequency counter; k, 50-Ω termination.

Fig. 3
Fig. 3

Relative SMM laser power at 163 μm as a function of CH3OH pressure.

Fig. 4
Fig. 4

Frequency and rf power dependence of the double-resonance signal for the doublet Δ1(25,40). The SMM laser was oscillating on the 163-μm line at a pressure of 120 mTorr.

Fig. 5
Fig. 5

Pressure and rf power dependence of the Δ1(25,40) double resonance. Δrf is the variation in SMM laser power resulting from application of the rf field. Positive Δrf corresponds to a SMM power decrease. PSMM is the laser power in the absence of rf excitation. Δν is the halfwidth (FWHM) of the double-resonance signal.

Fig. 6
Fig. 6

Pressure dependence of the Δ0(26,40) double-resonance amplitude. −Δrf indicates an SMM power increase. The pair of curves referred to the right-hand ordinate shows the pressure dependence of the pump rate γp for 0 < fγ/γυ < 1.

Fig. 7
Fig. 7

Double-resonance signal observed for the doublet Δ1(24,40) using the 163-μm line.

Fig. 8
Fig. 8

Energy level diagrams used for rate equation analyses of the three pertinent IR–SMM–rf interactions.

Fig. 9
Fig. 9

Pressure dependence of Δ rf for the Δ1(25,40) double resonance.

Fig. 10
Fig. 10

Pressure dependence of Δ rf for the Δ0(26,40) double resonance.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ ( J , K ) = S ( K ) ( J + K ) ! ( J K ) ! .
d N 0 d t = γ υ N 4 γ p N 0 ; d N 1 d t = B 21 n ( N 2 g 2 g 1 N 1 ) γ N 1 ; d N 2 d t = γ p N 0 γ N 2 B 21 n ( N 2 g 2 g 1 N 1 ) R 23 ( N 2 g 2 g 3 N 3 ) ; d N 3 d t = R 23 ( N 2 g 2 g 3 N 3 ) γ N 3 ; d n d t = Γ n + B 21 n ( N 2 g 2 g 1 N 1 ) .
R 23 = | μ 23 | 2 E rf 2 2 π ћ 2 Δ ν 23 .
n = γ B 21 ( 1 + γ γ ) [ γ p N B 21 γ Γ ( 1 + γ p γ υ ) 1 ] .
γ = γ ( 1 + R 23 γ + R 23 ) .
P SMM = 1 2 n c A h ν ,
Δ rf = c A h ν 4 [ γ p N Γ ( 1 + γ p γ υ ) + γ B 21 ] ( γ γ γ + γ ) .
P SMM = 1 2 t P s ( 2 L g t + a 1 ) .
Δ rf P SMM = [ 2 L g / ( t + a ) + 1 2 L g / ( t + a ) 1 ] ( γ γ γ + γ ) .
case A : Δ rf P SMM = [ 2 L g / ( t + a ) + 1 2 L g / ( t + a ) 1 ] R 23 2 γ .
Δ rf P SMM = ( γ γ γ + γ ) .
γ = γ ( 1 + R 13 γ + R 13 ) .
case B : Δ rf P SMM = R 13 2 γ .
case C : Δ rf P SMM = [ 2 L g / ( t + a ) 2 L g / ( t + a ) 1 ] γ p R 03 γ 2 [ 1 + γ p ( f / γ f υ 1 / γ ) ] .
2 L g t + a = 2 P SMM t P S + 1.
case A : Δ rf [ 2 L g / ( t + a ) 1 2 L g / ( t + a ) + 1 ] Δ rf P SMM = R 23 2 γ .
case C : Δ rf [ 2 L g / ( t + a ) 1 2 L g / ( t + a ) ] Δ rf P SMM = R 03 γ 1 ( 1 + γ / γ p + f γ / γ υ ) .
γ p = γ Δ rf [ ( R 03 ) / γ ] + ( 1 + f γ / γ υ ) Δ rf .

Metrics