Abstract

A dc magnetron discharge in a cylindrical diode with an incandescent cathode, filled with argon at low pressure, was studied by spectroscopic methods. Operating conditions were anode voltage Ua = 0–150 V, magnetic field B = 0–1.2 × 10−1 T, and pressure p = 10−3–10 Pa. It was found that the spectrum consists of ArII, ArIII, and ArIV ion spectral lines. Neutral argon spectral lines (ArI) were not recorded.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Hull, Phys. Rev. 18, 31 (1921).
    [CrossRef]
  2. G. B. Kollins, Microwave Magnetrons, MIT Rad. Lab. Series6 (McGraw-Hill, New York, 1948).
  3. P. A. Redhead, Can. J. Phys. 37, 1260 (1959).
    [CrossRef]
  4. P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
    [CrossRef]
  5. J. M. Lafferty, J. Appl. Phys. 32, 424 (1961).
    [CrossRef]
  6. P. Luhr, Phys. Rev. 49, 317 (1936).
    [CrossRef]
  7. D. Tošić, Nucl. Instrum. Methods 38, 26 (1965).
    [CrossRef]
  8. P. A. Redhead, Can. J. Phys. 36, 255 (1958).
    [CrossRef]
  9. H. A. Blevin, S. C. Haydon, Aust. J. Phys. 11, 18 (1958).
    [CrossRef]
  10. R. Haefer, Acta Phys. Austriaca 7, 25 (1953).
  11. P. A. Redhead, Can. J. Phys. 43, 1001 (1965).
    [CrossRef]
  12. D. Tošić, J. Electron. Control 17, 623 (1964).
    [CrossRef]
  13. V. Miljević, D. Tošić, J. Phys. D. 4, 1545 (1971).
    [CrossRef]
  14. D. Tošić, V. Miljević, Int. J. Electron. 30, 175 (1971).
    [CrossRef]
  15. V. Miljević, D. Tošić, in Proceedings, Second International Conference on Gas Discharge, London, 1972, Conference Publication No. 90 (Institution of Electrical Engineers, London, 1972), p. 347.
  16. V. Miljević, D. Tošić, J. Appl. Phys. 51, 2520 (1980).
    [CrossRef]
  17. W. B. Bridges, Appl. Phys. Lett. 4, 128 (1964).
    [CrossRef]

1980 (1)

V. Miljević, D. Tošić, J. Appl. Phys. 51, 2520 (1980).
[CrossRef]

1971 (2)

V. Miljević, D. Tošić, J. Phys. D. 4, 1545 (1971).
[CrossRef]

D. Tošić, V. Miljević, Int. J. Electron. 30, 175 (1971).
[CrossRef]

1965 (2)

P. A. Redhead, Can. J. Phys. 43, 1001 (1965).
[CrossRef]

D. Tošić, Nucl. Instrum. Methods 38, 26 (1965).
[CrossRef]

1964 (2)

D. Tošić, J. Electron. Control 17, 623 (1964).
[CrossRef]

W. B. Bridges, Appl. Phys. Lett. 4, 128 (1964).
[CrossRef]

1962 (1)

P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
[CrossRef]

1961 (1)

J. M. Lafferty, J. Appl. Phys. 32, 424 (1961).
[CrossRef]

1959 (1)

P. A. Redhead, Can. J. Phys. 37, 1260 (1959).
[CrossRef]

1958 (2)

P. A. Redhead, Can. J. Phys. 36, 255 (1958).
[CrossRef]

H. A. Blevin, S. C. Haydon, Aust. J. Phys. 11, 18 (1958).
[CrossRef]

1953 (1)

R. Haefer, Acta Phys. Austriaca 7, 25 (1953).

1936 (1)

P. Luhr, Phys. Rev. 49, 317 (1936).
[CrossRef]

1921 (1)

A. W. Hull, Phys. Rev. 18, 31 (1921).
[CrossRef]

Blevin, H. A.

H. A. Blevin, S. C. Haydon, Aust. J. Phys. 11, 18 (1958).
[CrossRef]

Bridges, W. B.

W. B. Bridges, Appl. Phys. Lett. 4, 128 (1964).
[CrossRef]

Haefer, R.

R. Haefer, Acta Phys. Austriaca 7, 25 (1953).

Haydon, S. C.

H. A. Blevin, S. C. Haydon, Aust. J. Phys. 11, 18 (1958).
[CrossRef]

Hobson, J. P.

P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
[CrossRef]

Hull, A. W.

A. W. Hull, Phys. Rev. 18, 31 (1921).
[CrossRef]

Kollins, G. B.

G. B. Kollins, Microwave Magnetrons, MIT Rad. Lab. Series6 (McGraw-Hill, New York, 1948).

Kornelsen, E. V.

P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
[CrossRef]

Lafferty, J. M.

J. M. Lafferty, J. Appl. Phys. 32, 424 (1961).
[CrossRef]

Luhr, P.

P. Luhr, Phys. Rev. 49, 317 (1936).
[CrossRef]

Miljevic, V.

V. Miljević, D. Tošić, J. Appl. Phys. 51, 2520 (1980).
[CrossRef]

V. Miljević, D. Tošić, J. Phys. D. 4, 1545 (1971).
[CrossRef]

D. Tošić, V. Miljević, Int. J. Electron. 30, 175 (1971).
[CrossRef]

V. Miljević, D. Tošić, in Proceedings, Second International Conference on Gas Discharge, London, 1972, Conference Publication No. 90 (Institution of Electrical Engineers, London, 1972), p. 347.

Redhead, P. A.

P. A. Redhead, Can. J. Phys. 43, 1001 (1965).
[CrossRef]

P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
[CrossRef]

P. A. Redhead, Can. J. Phys. 37, 1260 (1959).
[CrossRef]

P. A. Redhead, Can. J. Phys. 36, 255 (1958).
[CrossRef]

Tošic, D.

V. Miljević, D. Tošić, J. Appl. Phys. 51, 2520 (1980).
[CrossRef]

V. Miljević, D. Tošić, J. Phys. D. 4, 1545 (1971).
[CrossRef]

D. Tošić, V. Miljević, Int. J. Electron. 30, 175 (1971).
[CrossRef]

D. Tošić, Nucl. Instrum. Methods 38, 26 (1965).
[CrossRef]

D. Tošić, J. Electron. Control 17, 623 (1964).
[CrossRef]

V. Miljević, D. Tošić, in Proceedings, Second International Conference on Gas Discharge, London, 1972, Conference Publication No. 90 (Institution of Electrical Engineers, London, 1972), p. 347.

Acta Phys. Austriaca (1)

R. Haefer, Acta Phys. Austriaca 7, 25 (1953).

Appl. Phys. Lett. (1)

W. B. Bridges, Appl. Phys. Lett. 4, 128 (1964).
[CrossRef]

Aust. J. Phys. (1)

H. A. Blevin, S. C. Haydon, Aust. J. Phys. 11, 18 (1958).
[CrossRef]

Can. J. Phys. (4)

P. A. Redhead, Can. J. Phys. 43, 1001 (1965).
[CrossRef]

P. A. Redhead, Can. J. Phys. 37, 1260 (1959).
[CrossRef]

P. A. Redhead, E. V. Kornelsen, J. P. Hobson, Can. J. Phys. 40, 1814 (1962).
[CrossRef]

P. A. Redhead, Can. J. Phys. 36, 255 (1958).
[CrossRef]

Int. J. Electron. (1)

D. Tošić, V. Miljević, Int. J. Electron. 30, 175 (1971).
[CrossRef]

J. Appl. Phys. (2)

V. Miljević, D. Tošić, J. Appl. Phys. 51, 2520 (1980).
[CrossRef]

J. M. Lafferty, J. Appl. Phys. 32, 424 (1961).
[CrossRef]

J. Electron. Control (1)

D. Tošić, J. Electron. Control 17, 623 (1964).
[CrossRef]

J. Phys. D. (1)

V. Miljević, D. Tošić, J. Phys. D. 4, 1545 (1971).
[CrossRef]

Nucl. Instrum. Methods (1)

D. Tošić, Nucl. Instrum. Methods 38, 26 (1965).
[CrossRef]

Phys. Rev. (2)

A. W. Hull, Phys. Rev. 18, 31 (1921).
[CrossRef]

P. Luhr, Phys. Rev. 49, 317 (1936).
[CrossRef]

Other (2)

G. B. Kollins, Microwave Magnetrons, MIT Rad. Lab. Series6 (McGraw-Hill, New York, 1948).

V. Miljević, D. Tošić, in Proceedings, Second International Conference on Gas Discharge, London, 1972, Conference Publication No. 90 (Institution of Electrical Engineers, London, 1972), p. 347.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: A, anode; C, cathode.

Fig. 2
Fig. 2

Dependence of the discharge current on the magnetic field for (a) p = 8 × 10−2 Pa, (b) p = 1.33 × 10−1 Pa.

Fig. 3
Fig. 3

Dependence of the ratio of gas cutoff magnetic field (Bcg) and vacuum cutoff magnetic field (Bc) on the pressure for Ua = 50 V.

Fig. 4
Fig. 4

Part of the spectrum of the magnetron discharge (with a reference iron spectrum) for the operating conditions: ( a ) p = 1.33 Pa , U a = 30 V , B = 2 × 10 2 T , I a = 3.8 A ( b ) p = 1.33 × 10 1 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 3.6 A ( c ) p = 8 × 10 2 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 1.4 A .

Fig. 5
Fig. 5

Dependence of the spectral line intensities: ArII 488 nm [curve (1)] and ArII 476.5 nm [curve (2)] and discharge current (dashed curve) on the magnetic field for Ua = 30 V and p = 1.33 Pa.

Fig. 6
Fig. 6

Dependence of the spectral line intensities: ArII 488 nm [curve (1)] and ArII 476.5 nm [curve (2)] and discharge current (dashed curve) on the magnetic field for Ua = 70 V and p = 8 × 10−2 Pa.

Fig. 7
Fig. 7

Dependence of the spectral line intensities: ArII 488 nm [curve (1)] and ArII 476.5 nm [curve (2)] and discharge current (dashed curve) on the magnetic field for Ua = 120 V and p = 8 × 10−2 Pa.

Fig. 8
Fig. 8

Radial distribution of the ArII 480.6-nm spectral line intensity for Ua = 70 V and p = 8 × 10−2 Pa: (1) B = 1.2 × 10−2 T and (2) B = 8.4 × 10−2 T.

Fig. 9
Fig. 9

Dependence of the excitation temperature [curve (c)], ArII 480.6-nm spectral line intensity [curve (b)], and discharge current [curve (a)] on the magnetic field for Ua = 70 V and p = 8 × 10−2 Pa.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( a ) p = 1.33 Pa , U a = 30 V , B = 2 × 10 2 T , I a = 3.8 A ( b ) p = 1.33 × 10 1 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 3.6 A ( c ) p = 8 × 10 2 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 1.4 A .
( a ) p = 1.33 Pa , U a = 30 V , B = 2 × 10 2 T , I a = 3.8 A ( b ) p = 1.33 × 10 1 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 3.6 A ( c ) p = 8 × 10 2 Pa , U a = 70 V , B = 2 × 10 2 T , I a = 1.4 A .

Metrics