Abstract

The Bi12SiO20 (BSO) crystal has been used as an optical storage medium for a 2-D optical field to obtain a delayed coherent optical image. The method used the BSO crystal in a four-wave mixing configuration to produce a phase-conjugated wave front. It has been demonstrated that the image of a vinyl film could be compared with its stored image over a time delay varying from 40 msec to a few seconds. Measurements have also been made of the changes of optical path length within this inhomogeneous medium.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
    [CrossRef]
  2. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21 (1979).
    [CrossRef] [PubMed]
  3. J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
    [CrossRef]
  4. F. M. Kuchel, H. J. Tiziani, Opt. Commun. 38, 17 (1981).
    [CrossRef]
  5. A. E. Siegman, Opt. Commun. 31, 257 (1979).
    [CrossRef]
  6. J. P. Huignard, J. P. Herriau, Appl. Opt. 16, 1807 (1977).
    [CrossRef] [PubMed]
  7. J. P. Huignard, J. P. Herriau, G. Rivet, P. Gunter, Opt. Lett. 5, 102 (1980).
    [CrossRef] [PubMed]
  8. J. P. Hermann, J. P. Herriau, J. P. Huignard, Appl. Opt.20, 2173 (1981).
    [CrossRef] [PubMed]
  9. P. J. Bryanston-Cross, J-J. Camus, ASME Paper 82-GT-132 (1982).

1981 (1)

F. M. Kuchel, H. J. Tiziani, Opt. Commun. 38, 17 (1981).
[CrossRef]

1980 (2)

1979 (2)

1978 (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

1977 (1)

Aubourg, P.

Bryanston-Cross, P. J.

P. J. Bryanston-Cross, J-J. Camus, ASME Paper 82-GT-132 (1982).

Camus, J-J.

P. J. Bryanston-Cross, J-J. Camus, ASME Paper 82-GT-132 (1982).

Gunter, P.

Hermann, J. P.

J. P. Hermann, J. P. Herriau, J. P. Huignard, Appl. Opt.20, 2173 (1981).
[CrossRef] [PubMed]

Herriau, J. P.

Huignard, J. P.

Kuchel, F. M.

F. M. Kuchel, H. J. Tiziani, Opt. Commun. 38, 17 (1981).
[CrossRef]

Rivet, G.

Siegman, A. E.

A. E. Siegman, Opt. Commun. 31, 257 (1979).
[CrossRef]

Spitz, E.

Tiziani, H. J.

F. M. Kuchel, H. J. Tiziani, Opt. Commun. 38, 17 (1981).
[CrossRef]

White, J. O.

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

Yariv, A.

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Opt. Commun. (2)

F. M. Kuchel, H. J. Tiziani, Opt. Commun. 38, 17 (1981).
[CrossRef]

A. E. Siegman, Opt. Commun. 31, 257 (1979).
[CrossRef]

Opt. Lett. (2)

Other (2)

J. P. Hermann, J. P. Herriau, J. P. Huignard, Appl. Opt.20, 2173 (1981).
[CrossRef] [PubMed]

P. J. Bryanston-Cross, J-J. Camus, ASME Paper 82-GT-132 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of dynamic interferometry using a BSO phase-conjugate mirror. The interferometry is divided into two stages; the first stage is for storing the object field resulting from the illumination of a collimated laser beam at an instant, and the second stage is to read out the stored field after a desired delay time and to observe the returned field having passed through the time-varying object interferometrically.

Fig. 2
Fig. 2

Schematic of the constructed experimental system and its operation: M, mirror; Lx, lens for expanding the laser beam; Lc, lens for collimating the laser beam; S, shutter; BS, beam splitter; ATT, attenuator. A lens is inserted to image the object on the BSO if the phase variation of the object is large.

Fig. 3
Fig. 3

Time required to form the hologram in the BSO crystal used. Measurements were made in the two-wave mixing configuration,8 and the efficiency η is the ratio of the diffracted light intensity to the incident light intensity of the He–Ne laser.

Fig. 4
Fig. 4

Experimental results of dynamic interferometry for the case where a plane glass plate was rotated as the object.

Fig. 5
Fig. 5

Conventional interferogram of a twice-folded thin vinyl film used as the object in dynamic interferometry.

Fig. 6
Fig. 6

Experimental results of dynamic interferometry for the object shown in Fig. 5: in (a) the object was not moved; in (b) it was slightly moved laterally; in (c) the two fringe patterns are redrawn and superposed for comparison; (d) is the contour map of the phase change obtained from (c), where it is assumed that the fringe shifts in the right and left directions in (c) correspond to positive and negative phase changes, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h ( x , y ; t ) = g ( x , y ) f ( x , y ; t ) .
g ( x , y ; t 1 , t 2 ) = f ( x , y ; t 2 ) h * ( x , y ; t 1 ) = f ( x , y ; t 2 ) f * ( x , y ; t 1 ) g * ( x , y ) .
f ( x , y ; t ) = exp [ j k n ( x , y , z ; t ) d z ] ,
g ( x , y ; t 1 , t 2 ) = exp { j k [ n ( x , y , z ; t 2 ) = n ( x , y , z ; t 1 ) ] dz } g * ( x , y ) .
I ( x , y ) = a + b · cos { k [ n ( x , y , z ; t 2 ) n ( x , y , z ; t 1 ) ] d z ( α + α ) x ( β + β ) y } ,
n ( x , y , z ; t 2 ) n ( x , y , z ; t 1 ) = n ( x , y , z ; t 1 ) t Δ t ;
n ( x , y , z ; t 2 ) n ( x , y , z ; t 1 ) = n ( x + Δ x , y , z ) n ( x , y , z ) = n ( x , y , z ) x Δ x .

Metrics