Abstract

Daytime thermospheric temperatures and wind velocities have been inferred from dual Fabry-Perot spectrometer observations of the atomic oxygen emission line at λ630 nm, and this paper details the analysis procedures applied to the recorded spectra. Numerical simulation of the recorded spectra was used to examine the limitations imposed by analysis assumptions and by the influence of atmospheric molecular oxygen and water vapor absorption lines near λ630 nm. The observational and analysis procedures provide a reliable ground-based means of monitoring the thermal and dynamical state of the neutral thermosphere during the daytime.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
    [CrossRef]
  2. G. Hernandez, R. G. Roble, J. Geophys. Res. 81, 2065 (1976).
    [CrossRef]
  3. T. D. Cocks, F. Jacka, J. Atmos. Terr. Phys. 41, 409 (1979).
    [CrossRef]
  4. T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
    [CrossRef]
  5. L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 1163 (1965).
    [CrossRef]
  6. G. Henderson, P. N. Slater, Planet. Space Sci. 14, 1035 (1966).
    [CrossRef]
  7. J. F. Grainger, J. Ring, Nature London 193, 762 (1962).
    [CrossRef]
  8. A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
    [CrossRef]
  9. F. E. Barmore, Planet. Space Sci. 25, 185 (1977).
    [CrossRef]
  10. F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
    [CrossRef]
  11. T. D. Cocks, Ph.D. Thesis, U. Adelaide (1977).
  12. P. A. Wilksch, Ph.D. Thesis, U. Adelaide (1975).

1980 (2)

T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

1979 (2)

F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
[CrossRef]

T. D. Cocks, F. Jacka, J. Atmos. Terr. Phys. 41, 409 (1979).
[CrossRef]

1977 (1)

F. E. Barmore, Planet. Space Sci. 25, 185 (1977).
[CrossRef]

1976 (1)

G. Hernandez, R. G. Roble, J. Geophys. Res. 81, 2065 (1976).
[CrossRef]

1966 (1)

G. Henderson, P. N. Slater, Planet. Space Sci. 14, 1035 (1966).
[CrossRef]

1965 (2)

A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
[CrossRef]

L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 1163 (1965).
[CrossRef]

1962 (1)

J. F. Grainger, J. Ring, Nature London 193, 762 (1962).
[CrossRef]

Barmore, F. E.

F. E. Barmore, Planet. Space Sci. 25, 185 (1977).
[CrossRef]

Bens, A. R.

A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
[CrossRef]

Bower, A. R. D.

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
[CrossRef]

Cocks, T. D.

T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
[CrossRef]

T. D. Cocks, F. Jacka, J. Atmos. Terr. Phys. 41, 409 (1979).
[CrossRef]

T. D. Cocks, Ph.D. Thesis, U. Adelaide (1977).

Cogger, L. L.

A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
[CrossRef]

L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 1163 (1965).
[CrossRef]

Creighton, D. F.

T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

Grainger, J. F.

J. F. Grainger, J. Ring, Nature London 193, 762 (1962).
[CrossRef]

Henderson, G.

G. Henderson, P. N. Slater, Planet. Space Sci. 14, 1035 (1966).
[CrossRef]

Hernandez, G.

G. Hernandez, R. G. Roble, J. Geophys. Res. 81, 2065 (1976).
[CrossRef]

Jacka, F.

T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
[CrossRef]

T. D. Cocks, F. Jacka, J. Atmos. Terr. Phys. 41, 409 (1979).
[CrossRef]

Ring, J.

J. F. Grainger, J. Ring, Nature London 193, 762 (1962).
[CrossRef]

Roble, R. G.

G. Hernandez, R. G. Roble, J. Geophys. Res. 81, 2065 (1976).
[CrossRef]

Shepherd, G. G.

A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
[CrossRef]

L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 1163 (1965).
[CrossRef]

Slater, P. N.

G. Henderson, P. N. Slater, Planet. Space Sci. 14, 1035 (1966).
[CrossRef]

Wilksch, P. A.

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
[CrossRef]

P. A. Wilksch, Ph.D. Thesis, U. Adelaide (1975).

J. Atmos. Terr. Phys. (3)

T. D. Cocks, F. Jacka, J. Atmos. Terr. Phys. 41, 409 (1979).
[CrossRef]

T. D. Cocks, D. F. Creighton, F. Jacka, J. Atmos. Terr. Phys. 42, 499 (1980).
[CrossRef]

F. Jacka, A. R. D. Bower, P. A. Wilksch, J. Atmos. Terr. Phys. 41, 397 (1979).
[CrossRef]

J. Geophys. Res. (1)

G. Hernandez, R. G. Roble, J. Geophys. Res. 81, 2065 (1976).
[CrossRef]

J. Phys. E (1)

F. Jacka, A. R. D. Bower, D. F. Creighton, P. A. Wilksch, J. Phys. E 13, 562 (1980).
[CrossRef]

Nature London (1)

J. F. Grainger, J. Ring, Nature London 193, 762 (1962).
[CrossRef]

Planet. Space Sci. (4)

A. R. Bens, L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 551 (1965).
[CrossRef]

F. E. Barmore, Planet. Space Sci. 25, 185 (1977).
[CrossRef]

L. L. Cogger, G. G. Shepherd, Planet. Space Sci. 13, 1163 (1965).
[CrossRef]

G. Henderson, P. N. Slater, Planet. Space Sci. 14, 1035 (1966).
[CrossRef]

Other (2)

T. D. Cocks, Ph.D. Thesis, U. Adelaide (1977).

P. A. Wilksch, Ph.D. Thesis, U. Adelaide (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Recorded sky and solar spectra normalized to unity at λc (0900 h LMT, 20 Feb. 1976).

Fig. 2
Fig. 2

Feature resulting from subtraction of the spectra of Fig. 1, shown as a percentage of the sky signal at λc.

Fig. 3
Fig. 3

Normalized power spectrum of Fig. 2. Average noise power Nσ2 shown by dashed line.

Fig. 4
Fig. 4

Reconstructed subtraction feature superimposed on data points. Analysis estimated a temperature of 1190 ± 110 K and a 2.6 ± 0.4% Ring component.

Fig. 5
Fig. 5

High- and low-resolution (thick line) FPI profiles over a 1.2-nm wavelength range centered on λp.

Fig. 6
Fig. 6

Dual FPI profile used in numerical simulation of the experiment. Product of two Airy functions shown by dots.

Fig. 7
Fig. 7

Numerically generated sky and solar spectra normalized to unity at λc.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( λ ) = τ S Ω p ( λ ) ,
p ( λ ) = [ f ( λ ) b ( λ ) ] * i ( λ ) ,
p n = t N τ S Ω Q p ( λ ) d ( λ ) + d + z n ,
p n = t N S Ω τ Q Δ λ N Δ p ( λ n ) + d + z n ,
λ n = λ ϕ + ( n + 1 2 ) Δ λ N Δ .
g ( n ) = G ¯ π 1 / 2 n e exp [ ( n n p ) 2 n e 2 ] ,
n e = 7.6 × 10 8 T 1 / 2 m N Δ ,
y a ( λ ) = L 1 { [ b ( λ ) f ( λ ) ] * i ( λ ) } ,
y b ( λ ) = L 2 { [ b ( λ ) f ( λ ) + α f ( λ ) ] * i ( λ ) } + [ g ( λ ) f ( λ ) ] * i ( λ ) .
y b ( λ c ) β y a ( λ c ) = 0 ,
y ( λ ) = [ g ( λ ) f ( λ ) ] * i ( λ ) + ( L 2 β L 1 ) { [ b ( λ ) f ( λ ) ] * i ( λ ) + L 2 α [ f ( λ ) * i ( λ ) ] } .
y w ( λ ) = L 3 [ f ( λ ) * i ( λ ) ] .
β y a ( λ c ) γ y w ( λ c ) = 0 ,
y ( λ ) = [ g ( λ ) f ( λ ) ] * i ( λ ) + α 1 + α r ( λ ) ,
r ( λ ) = γ y w ( λ ) β y a ( λ ) .
{ [ g ( λ ) f ( λ ) ] * i ( λ ) } λ c = 0.
[ b ( λ ) f ( λ ) * i ( λ ) ] λ c = [ f ( λ ) * i ( λ ) ] λ c .
y n = t n + α 1 + α r n + z n ,
χ 2 = n = 0 N 1 | y n ( t n + α 1 + α r n ) | 2 σ 2 .
χ q 2 = 2 N σ 2 n = 0 q | Y n ( T n + α 1 + α R n ) | 2 ,
χ q 2 = 2 N σ 2 n = 0 q | Y n ( I n G n + α 1 + α R n ) | 2 ,
n = 0 N 1 i n = 1 ,
i n = i ( λ n ) Δ λ N Δ A .
C = t N Q S Ω τ τ F n = 0 N 1 λ n λ n + 1 [ g ( λ ) * i ( λ ) ] d λ ,
C = Δ λ N Δ t N Q S Ω τ τ F n = 0 N 1 [ g ( λ ) * i ( λ ) ] λ n .
C = t N S Ω Q A G ¯ τ τ F = n = 0 N 1 t n .
g n = H π 1 / 2 n e exp [ ( n n p ) 2 n e 2 ] ,
G n = H exp ( π 2 n 2 n e 2 N 2 ) exp ( 2 π j n n p N ) .
ρ n = Q S Ω τ W λ n λ n + 1 f ( λ ) i ( λ λ ) d λ d λ ,
ρ n = Q S Ω τ W Δ λ N Δ K ,
K = f ( λ ) i ( λ λ ) d λ
K = λ a λ b f ( λ ) i ( λ ) d λ ,
K = ( 1 + 2 k ) λ 0 λ N 1 f ( λ ) i ( λ ) d λ ,
k = [ λ N 1 λ b f ( λ ) i ( λ ) d λ ] [ λ 0 λ N 1 f ( λ ) i ( λ ) d λ ] 1 .
K = ( 1 + 2 k ) τ F A .
ρ n = Q S Ω τ Δ λ N Δ ( 1 + 2 k ) τ F A ,
G ¯ = C ( 1 + 2 k ) ρ n W Δ λ N Δ .
G ¯ = H ( 1 + 2 k ) ρ n W Δ λ N Δ .

Metrics