Abstract

Light deflection is accomplished by diffraction from a transient index modulation established as a grating of variable frequency in an optical material by the interference of two controlling light beams. This device may be considered an opto-optical analog to an acoustooptical deflector, in that a change in angular deflection is created by altering the frequency of the diffraction grating. In this paper we report on a technique for altering the grating frequency by changing the wavelength of the control beams and the use of a novel optical system to maintain the Bragg condition over a wide range of frequencies. Configurations exhibiting very large angular deflections have been designed using a computer simulation and optimization program that allows minimization of the Bragg detuning. This new method of light deflection allows either discrete or continuous light scanning or modulation. A particular example using lithium niobate will be discussed which produces an 11.8° deflection from a 0.027-μm wavelength change and with an angular detuning of less than ±0.03°. The use of other materials, inorganic, organic, and dispersive, will also be discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).
  2. L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
    [CrossRef]
  3. R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
    [CrossRef] [PubMed]
  4. D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
    [CrossRef]
  5. S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981).
    [CrossRef]
  6. J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
    [CrossRef]
  7. J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication.
    [CrossRef]
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  10. R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
    [CrossRef]
  11. J. P. Huignard, J. P. Herriau, G. Rivet, P. Günter, Opt. Lett. 5, 102 (1980).
    [CrossRef] [PubMed]
  12. F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
    [CrossRef]
  13. J. Feinberg, R. W. Hellwarth, Opt. Lett. 15, 519 (1980).
    [CrossRef]
  14. P. F. Liao, D. M. Bloom, Opt. Lett. 3, 4 (1978).
    [CrossRef] [PubMed]
  15. Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
    [CrossRef]
  16. A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

1982

L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
[CrossRef]

A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

1981

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

1980

J. P. Huignard, J. P. Herriau, G. Rivet, P. Günter, Opt. Lett. 5, 102 (1980).
[CrossRef] [PubMed]

J. Feinberg, R. W. Hellwarth, Opt. Lett. 15, 519 (1980).
[CrossRef]

J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication.
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1978

S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981).
[CrossRef]

P. F. Liao, D. M. Bloom, Opt. Lett. 3, 4 (1978).
[CrossRef] [PubMed]

1976

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

1975

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
[CrossRef]

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).

1971

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

Aldrich, R. E.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Bar-Joseph, I.

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

Bloom, D. M.

Chen, F. S.

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

Dickson, L. D.

L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
[CrossRef]

Feinberg, J.

J. Feinberg, R. W. Hellwarth, Opt. Lett. 15, 519 (1980).
[CrossRef]

Flamand, J.

G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).

Garito, A. F.

A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

Günter, P.

Hartman, N. F.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Harvill, M. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, R. W. Hellwarth, Opt. Lett. 15, 519 (1980).
[CrossRef]

S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981).
[CrossRef]

Herriau, J. P.

Hou, S. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Huignard, J. P.

Jensen, S. M.

S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981).
[CrossRef]

Kenan, R. P.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kuizenga, D. J.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Liao, P. F.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Osterwalder, J. M.

J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication.
[CrossRef]

Phillion, D. W.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
[CrossRef]

Pieuchard, G.

G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).

Rickett, B. J.

J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication.
[CrossRef]

Rivet, G.

Siegman, A. E.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
[CrossRef]

Silberberg, Y.

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

Sincerbox, G. T.

L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
[CrossRef]

Singer, K. D.

A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Tang, C. L.

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

Telle, J. M.

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

Vahey, D. W.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Verber, C. M.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Wolfheimer, A. D.

L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
[CrossRef]

Wood, V. E.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).
[CrossRef]

S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 167 (1978); A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978); C. R. Giuliano, Phys. Today, 27 (Apr.1981).
[CrossRef]

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

IBM J. Res. Dev.

L. D. Dickson, G. T. Sincerbox, A. D. Wolfheimer, IBM J. Res. Dev. 26, 228 (1982).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Osterwalder, B. J. Rickett, IEEE J. Quantum Electron. QE-16, 250 (1980); B. Pokrowsky, G. C. Bjorklund, IBM San Jose Research; private communication.
[CrossRef]

J. Appl. Phys.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

Jpn. J. Appl. Phys.

G. Pieuchard, J. Flamand, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).

Laser Focus

A. F. Garito, K. D. Singer, Laser Focus, 59 (Feb.1982).

Opt. Commun.

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

Opt. Eng.

R. P. Kenan, D. W. Vahey, N. F. Hartman, V. E. Wood, C. M. Verber, Opt. Eng. 15, 12 (1976); W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Interference of two wave fronts.

Fig. 2
Fig. 2

Diffraction from a periodic structure.

Fig. 3
Fig. 3

Effect of a change in recording wavelength on the diffraction of an illuminating beam incident at a fixed angle.

Fig. 4
Fig. 4

Diffraction efficiency as a function of angular detuning from the Bragg condition.

Fig. 5
Fig. 5

Effect of a change in both recording wavelength and incidence angles on the diffraction of an illuminating beam.

Fig. 6
Fig. 6

Method for creating wavelength-dependent changes in incidence angles using diffraction gratings.

Fig. 7
Fig. 7

Geometry describing parameters for fringe recording and beam diffraction.

Fig. 8
Fig. 8

Effect of control beam incidence angle on both Bragg detuning and deflection angle for one particular configuration.

Fig. 9
Fig. 9

Variation of Bragg detuning with wavelength for three different sample orientations.

Fig. 10
Fig. 10

Diffraction efficiency and deflection angle comparison of fringe tilting (solid curve) and static fringe (broken curve) light deflectors.

Fig. 11
Fig. 11

Experimental arrangement.

Fig. 12
Fig. 12

Deflected 0.633-μm light using five argon laser wavelengths for control at a low spatial frequency (358 mm−1) in LiNbO3.

Fig. 13
Fig. 13

Deflected 0.633-μm light using five argon laser wavelengths for control at a medium spatial frequency (745 mm−1) in LiNbO3.

Fig. 14
Fig. 14

Deflected 0.633-μm light using two argon laser wavelengths for control at a high spatial frequency (2000 mm−1) in LiNbO3: (a) using an afocal control beam; (b) using a conjugate image control beam system.

Tables (4)

Tables Icon

Table I Calculated Reconstruction Angles Satisfying the Bragg Condition for Two Orientations of the Control Beam Optical Axis Using LiNbO3

Tables Icon

Table II Comparison of Calculated and Measured Deflection Angles for LiNbO3 Using a Low Spatial Frequency Deflection 358 mm−1

Tables Icon

Table III Comparison of Calculated and Measured Deflection Angles for LiNbO3 Using a Medium Spatial Frequency Deflection 745 mm−1

Tables Icon

Table IV Comparison of Calculated and Measured Deflection Angles for a High Spatial Frequency Deflection 2000 mm−1

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

2 n d sin 1 2 ( ϕ 1 + ϕ 2 ) = λ .
2 n d sin ϕ 0 = λ 0 .
Δ ϕ 0 = ( Δ d d ) tan ϕ 0 = ( Δ λ λ ) tan ϕ 0 .
η = exp ( i ξ ) sin ( ξ 2 + ν 2 ) 1 / 2 ( 1 + ξ 2 ν 2 ) 1 / 2 ,
ν = π Δ n T λ 0 cos ϕ 0 ,
ξ = π T ( ϕ ϕ 0 ) d ,
sin δ ¯ i = m i p i λ ¯ sin γ i ,
sin δ i j = m i p i λ j sin γ i .
θ i j = θ ¯ + M i ( δ i j δ ¯ i ) α ,
ϕ i j = sin 1 1 n j sin θ i j ,
d j = λ j 2 n j sin 1 2 ( ϕ 1 j ϕ 2 j ) .
β j = 1 2 ( ϕ 1 j + ϕ 2 j )
ϕ 0 j = β j + sin 1 λ 0 2 d j n 0 ,
ϕ 0 j = β j + sin 1 λ 0 2 d j n 0 ,
θ 0 j = sin 1 n 0 sin ϕ 0 j ,
θ 0 j = sin 1 n 0 sin ϕ 0 j ,
Δ ϕ j = sin 1 ( λ 0 2 n 0 d j ) sin 1 [ 1 n 0 sin ( ϕ α ) ] β j ,

Metrics