Abstract

Light deflection is accomplished by diffraction from a transient index modulation established as a grating of variable frequency in an optical material by the interference of two controlling light beams. This device may be considered an opto-optical analog to an acoustooptical deflector, in that a change in angular deflection is created by altering the frequency of the diffraction grating. In this paper we report on a technique for altering the grating frequency by changing the wavelength of the control beams and the use of a novel optical system to maintain the Bragg condition over a wide range of frequencies. Configurations exhibiting very large angular deflections have been designed using a computer simulation and optimization program that allows minimization of the Bragg detuning. This new method of light deflection allows either discrete or continuous light scanning or modulation. A particular example using lithium niobate will be discussed which produces an 11.8° deflection from a 0.027-μm wavelength change and with an angular detuning of less than ±0.03°. The use of other materials, inorganic, organic, and dispersive, will also be discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription