Abstract

Earlier work on the local heating of stationary multilayer structures by focused laser light has been extended to deal with nonstationary situations. The numerical procedures described here are therefore applicable to many important technologies including optical recording, thermal marking, and laser annealing. We demonstrate this in two examples, namely, the effects of readout intensity on the readout signal from a quadrilayer magnetooptic disk and the writing threshold for ablative materials in single-layer and three-layer structures.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, G. A. N. Connell, J. W. Goodman, Appl. Opt. 21, 1106 (1982).
    [CrossRef] [PubMed]
  2. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1967).
  3. G. Birkhoff, R. S. Varga, D. Young, “Alternation Direction Implicit Methods,” in Advances in Computers, F. L. Alt, M. Rubinoff, Eds. (Academic, New York, 1962).
    [CrossRef]
  4. M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
    [CrossRef]
  5. P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
    [CrossRef]
  6. D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).
  7. G. A. N. Connell, unpublished.
  8. A. E. Bell, F. W. Spong, IEEE J. Quantum Electron. QE-14, 487 (1978).
    [CrossRef]

1982 (2)

M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
[CrossRef]

M. Mansuripur, G. A. N. Connell, J. W. Goodman, Appl. Opt. 21, 1106 (1982).
[CrossRef] [PubMed]

1978 (1)

A. E. Bell, F. W. Spong, IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

1971 (1)

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

1967 (1)

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

Bell, A. E.

A. E. Bell, F. W. Spong, IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

Birkhoff, G.

G. Birkhoff, R. S. Varga, D. Young, “Alternation Direction Implicit Methods,” in Advances in Computers, F. L. Alt, M. Rubinoff, Eds. (Academic, New York, 1962).
[CrossRef]

Connell, G. A. N.

M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
[CrossRef]

M. Mansuripur, G. A. N. Connell, J. W. Goodman, Appl. Opt. 21, 1106 (1982).
[CrossRef] [PubMed]

G. A. N. Connell, unpublished.

Goodman, J. W.

M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
[CrossRef]

M. Mansuripur, G. A. N. Connell, J. W. Goodman, Appl. Opt. 21, 1106 (1982).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1967).

Mansuripur, M.

M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
[CrossRef]

M. Mansuripur, G. A. N. Connell, J. W. Goodman, Appl. Opt. 21, 1106 (1982).
[CrossRef] [PubMed]

Maydan, D.

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

Pershan, P. S.

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

Spong, F. W.

A. E. Bell, F. W. Spong, IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

Varga, R. S.

G. Birkhoff, R. S. Varga, D. Young, “Alternation Direction Implicit Methods,” in Advances in Computers, F. L. Alt, M. Rubinoff, Eds. (Academic, New York, 1962).
[CrossRef]

Young, D.

G. Birkhoff, R. S. Varga, D. Young, “Alternation Direction Implicit Methods,” in Advances in Computers, F. L. Alt, M. Rubinoff, Eds. (Academic, New York, 1962).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

IEEE J. Quantum Electron. (1)

A. E. Bell, F. W. Spong, IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

J. Appl. Phys. (2)

M. Mansuripur, G. A. N. Connell, J. W. Goodman, J. Appl. Phys. 53, 4485 (1982).
[CrossRef]

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

Other (3)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1967).

G. Birkhoff, R. S. Varga, D. Young, “Alternation Direction Implicit Methods,” in Advances in Computers, F. L. Alt, M. Rubinoff, Eds. (Academic, New York, 1962).
[CrossRef]

G. A. N. Connell, unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a quadrilayer magnetooptic disk. The thicknesses of the reflector (hatched), intermediate layer, magnetic film (shaded), and overlayer are given in the text.

Fig. 2
Fig. 2

Steady-state isotherms in the magnetic film when the disk moves at 20 m/sec from left to right relative to the beam. The central spot at 40.6°C/mW is the hottest spot in the film, and each successive contour represents a temperature that is lowered by 10% of this maximum.

Fig. 3
Fig. 3

Steady-state isotherms at the surface of the overlayer when the disk moves at 20 m/sec from left to right relative to the beam. The central spot at 37.9°C/mW is the hottest spot on the surface, and each successive contour represents a temperature that is lowered by 10% of this maximum.

Fig. 4
Fig. 4

Steady-state isotherms in the aluminum reflector layer when the disk moves at 20 m/sec from left to right relative to the beam. The central spot at 12.9°C/mW is the hottest spot in the layer, and each successive contour represents a temperature that is lowered by 10% of this maximum.

Fig. 5
Fig. 5

Schematic representations of (a) single-layer, (b) three-layer, and (c) inverted three-layer ablative structures. (The thin ablative material is shaded and the reflector layer is hatched.)

Fig. 6
Fig. 6

Temperature rise in the single-layer tellurium film vs distance along the track at (a) 10, (b) 30, (c) 60, (d) 90, and (e) 110 nsec after the 5-mW pulse is switched on. (The dotted line indicates that there is no laser irradiation at this time.) The distance is measured from the point at which the pulse is turned on.

Fig. 7
Fig. 7

400°C isotherms in the single-layer tellurium film at 14, 20, 30, 60, 90, 100, and 120 nsec after the 5-mW pulse is turned on. (The dotted lines indicate that there is no laser irradiation at this time.) The envelope of these isotherms represents the hole ablated in the tellurium film. This may therefore be compared with the photomicrographs of holes written in similar conditions shown in the insert. (The track shown was written considerably above threshold to aid in reproduction in the journal. Tracks at threshold have the same aspect ratio and each hole is ~2000 nm long, in agreement with calculations.)

Fig. 8
Fig. 8

Temperature rise of the single-layer tellurium film vs time at (a) −500, (b) 500, (c) 1000, (d) 1500, (e) 2000, and (f) 2500 nm along the track. The distance is measured from the point at which the 5-mW pulse is turned on.

Tables (2)

Tables Icon

Table I Optical and Thermal Parameters of Materials Used in Examples

Tables Icon

Table II Measured and Calculated Threshold Results for Tellurium Ablative Media

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( r , t ) = { ( π r 0 2 ) 1 exp [ ( r / r 0 ) 2 ] 0 t Δ t , 0 otherwise ,
P n = ( 1 / Δ t ) ( n 1 ) Δ t n Δ t P ( t ) d t 1 n N
r n = { [ x 0 ( N n + 1 2 ) V Δ t ] 2 + y 0 2 } 1 / 2 1 n N
T ( x 0 , y 0 , z 0 , N Δ t ) = n = 1 N P n Ө [ r n , z 0 , ( N n + 1 ) Δ t ] .

Metrics