Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Remo, Opt. Lett. 3, 193 (1978).
    [CrossRef] [PubMed]
  2. J. L. Remo, “Perturbations, Stability and Diffraction Losses for n-Dimensional Optical Resonators,” (1983), in preparation.
  3. J. L. Remo, Appl. Opt. 19, 774 (1980); Appl. Opt. 20, 2997 (1981).
    [CrossRef] [PubMed]
  4. W. F. Krupke, W. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
    [CrossRef]

1980 (1)

1978 (1)

1969 (1)

W. F. Krupke, W. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Krupke, W. F.

W. F. Krupke, W. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Remo, J. L.

J. L. Remo, Appl. Opt. 19, 774 (1980); Appl. Opt. 20, 2997 (1981).
[CrossRef] [PubMed]

J. L. Remo, Opt. Lett. 3, 193 (1978).
[CrossRef] [PubMed]

J. L. Remo, “Perturbations, Stability and Diffraction Losses for n-Dimensional Optical Resonators,” (1983), in preparation.

Sooy, W.

W. F. Krupke, W. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

W. F. Krupke, W. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[CrossRef]

Opt. Lett. (1)

Other (1)

J. L. Remo, “Perturbations, Stability and Diffraction Losses for n-Dimensional Optical Resonators,” (1983), in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Possible stable optic axes for an optical resonator with an antisymmetric perturbation. For the even perturbation function the stable optic axes diverge from the center, while for the odd perturbation function the stable optic paths cross the center of the original optic axis.

Fig. 2
Fig. 2

Stable and unstable configurations for an optical axis with a symmetric perturbation. The even perturbation function introduces a compensation which allows stable optic axes to be introduced while the odd perturbation function destabilizes the resonator so that no (stable) optic axis exists.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ m ψ m ( x ) = exp i ϕ 2 ( x ) × exp i ϕ 1 ( x ) a a K ( x , x ) ψ m ( x ) d x ,
ϕ α 2 π λ f ( x ) ,
γ m ( 1 ) = i γ m ( 0 ) m | ϕ 1 + ϕ 2 | m ,
γ m ( 2 ) = γ m ( 0 ) { m | ϕ 1 ϕ 2 | m 2 2 m | ϕ 1 2 + ϕ 2 2 | m + n m n m | ϕ 1 + ϕ 2 | n 2 1 γ m ( 0 ) / γ n ( 0 ) } ,
γ m ( 1 ) = 0 ,
γ m ( 2 ) = γ m ( 0 ) 2 m | ϕ x | m 2 ,

Metrics