Abstract

Theoretical and experimental studies of wavelength-division multiplexing in a single-mode fiber optic coupler fabricated by mechanical polishing are reported. The variable spacing geometry of the device allows fine tuning of the center wavelength of operation. Wavelength selectivities ranging from 200 to 35 nm have been experimentally demonstrated, with cross talk ranging from 50 to 10 dB. Selectivity control is simply achieved by proper choice of the interaction length of the coupler. The dependence of the multiplexer behavior on all relevant parameters is investigated and found to satisfy predicted results.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, G. Winzer, in Technical Digest, European Conference on Optical Communications, Cannes (1982), AIX-1.
  2. N. S. Kapany et al., J. Opt. Soc. Am. 58, 1176 (1968).
    [CrossRef]
  3. Y. Murakami, S. Sudo, Appl. Opt. 20, 417 (1981).
    [CrossRef] [PubMed]
  4. O. Parriaux et al., in Proceedings, First International Conference on Rotation Sensors (MIT), Session 5, Nov.1981.
  5. O. Parriaux, F. Bernoux, G. Chartier, J. Opt. Commun. 2, 105 (1981).
  6. R. C. Alferness, P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
    [CrossRef]
  7. R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
    [CrossRef]
  8. M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
    [CrossRef]
  9. ITT single-mode step-index fiber, type T-110.
  10. L. F. Stokes, M. Chodorow, H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [CrossRef] [PubMed]
  11. A. L. Jones, J. Opt. Soc. Am. 55, 261 (1965).
    [CrossRef]
  12. R. Vanclooster, P. Phariseau, Physica 47, 485 (1970).
    [CrossRef]
  13. D. Marcuse, Bell Syst. Tech. J. 50, 1791 (1971).
  14. O. Parriaux, S. Gidon, A. A. Kuznetsov, Appl. Opt. 20, 2420 (1981).
    [CrossRef] [PubMed]
  15. T. Findakly, C. L. Chen, Appl. Opt. 17, 769 (1978).
    [CrossRef] [PubMed]
  16. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  17. W. Wijngaard, J. Opt. Soc. Am. 63, 944 (1973).
    [CrossRef]
  18. P. D. Lazay, A. D. Pearson, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper TnCC2.
  19. M. H. Slonecker, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper WBB7.

1982

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

L. F. Stokes, M. Chodorow, H. J. Shaw, Opt. Lett. 7, 288 (1982).
[CrossRef] [PubMed]

1981

1980

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

1978

R. C. Alferness, P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

T. Findakly, C. L. Chen, Appl. Opt. 17, 769 (1978).
[CrossRef] [PubMed]

1973

1971

D. Gloge, Appl. Opt. 10, 2252 (1971).
[CrossRef] [PubMed]

D. Marcuse, Bell Syst. Tech. J. 50, 1791 (1971).

1970

R. Vanclooster, P. Phariseau, Physica 47, 485 (1970).
[CrossRef]

1968

1965

Alferness, R. C.

R. C. Alferness, P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

Bergh, R. A.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Bernoux, F.

O. Parriaux, F. Bernoux, G. Chartier, J. Opt. Commun. 2, 105 (1981).

Chartier, G.

O. Parriaux, F. Bernoux, G. Chartier, J. Opt. Commun. 2, 105 (1981).

Chen, C. L.

Chodorow, M.

Cross, P. S.

R. C. Alferness, P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Findakly, T.

Gidon, S.

Gloge, D.

Jones, A. L.

Kapany, N. S.

Kotler, G.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Kuznetsov, A. A.

Lazay, P. D.

P. D. Lazay, A. D. Pearson, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper TnCC2.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 50, 1791 (1971).

Murakami, Y.

Parriaux, O.

O. Parriaux, S. Gidon, A. A. Kuznetsov, Appl. Opt. 20, 2420 (1981).
[CrossRef] [PubMed]

O. Parriaux, F. Bernoux, G. Chartier, J. Opt. Commun. 2, 105 (1981).

O. Parriaux et al., in Proceedings, First International Conference on Rotation Sensors (MIT), Session 5, Nov.1981.

Pearson, A. D.

P. D. Lazay, A. D. Pearson, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper TnCC2.

Phariseau, P.

R. Vanclooster, P. Phariseau, Physica 47, 485 (1970).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

L. F. Stokes, M. Chodorow, H. J. Shaw, Opt. Lett. 7, 288 (1982).
[CrossRef] [PubMed]

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Slonecker, M. H.

M. H. Slonecker, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper WBB7.

Stokes, L. F.

Sudo, S.

Vanclooster, R.

R. Vanclooster, P. Phariseau, Physica 47, 485 (1970).
[CrossRef]

Wijngaard, W.

Winzer, G.

See, for example, G. Winzer, in Technical Digest, European Conference on Optical Communications, Cannes (1982), AIX-1.

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 50, 1791 (1971).

Electron. Lett.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

IEEE J. Quantum Electron.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

R. C. Alferness, P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

J. Opt. Commun.

O. Parriaux, F. Bernoux, G. Chartier, J. Opt. Commun. 2, 105 (1981).

J. Opt. Soc. Am.

Opt. Lett.

Physica

R. Vanclooster, P. Phariseau, Physica 47, 485 (1970).
[CrossRef]

Other

P. D. Lazay, A. D. Pearson, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper TnCC2.

M. H. Slonecker, in Technical Digest, Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982), paper WBB7.

See, for example, G. Winzer, in Technical Digest, European Conference on Optical Communications, Cannes (1982), AIX-1.

O. Parriaux et al., in Proceedings, First International Conference on Rotation Sensors (MIT), Session 5, Nov.1981.

ITT single-mode step-index fiber, type T-110.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Fiber substrate. Fiber is bonded in a groove cut at the surface of a quartz block.

Fig. 2
Fig. 2

Photograph of a fiber coupler in its holder. The differential micrometer (right) is used to adjust the splitting ratio.

Fig. 3
Fig. 3

Typical oscilloscope trace of the optical power at the two output ports of a single-mode fiber coupler as a function of relative lateral offset between the fiber cores.

Fig. 4
Fig. 4

Relative position of the fiber cores in a curved-fiber coupler; an additional offset (y) perpendicular to the plane of the figure is also possible.

Fig. 5
Fig. 5

Theoretical dependence of the coupling coefficient of single-mode fiber couplers on signal wavelength for various fiber core spacings.

Fig. 6
Fig. 6

Interpretation of the dependence of the coupling coefficient of two single-mode fibers on the signal wavelength (see text).

Fig. 7
Fig. 7

Theoretical model for the dependence of the channel wavelength separation of a fiber multiplexer as a function of the interaction length (or radius of curvature) of the device for different fiber core spacings.

Fig. 8
Fig. 8

Coupling ratio vs signal wavelength in a curved-fiber multiplexer (R = 200 cm, δ0 = 0 μm). An increase in the fiber core offset results in a shift of the coupler response along the frequency range.

Fig. 9
Fig. 9

Experimental tuning curves of the same fiber coupler (R = 100 cm) measured at three different wavelengths, and corresponding computed curves fitted with the single parameter h0. (a) λ = 514.5 nm, h0 = 4.30 μm; (b) λ = 632.8 nm, h0 = 4.40 μm; (c) λ = 1064 nm, h0 = 4.28 μm.

Fig. 10
Fig. 10

Measured filter response of a 70-cm radius fiber multiplexer and theoretical prediction (δ0 = 0.95 μm).

Fig. 11
Fig. 11

Measured and theoretical tunability of the center wavelength of a 25-cm radius fiber multiplexer. A 5-μm offset shifts the crossed state from 550 to 850 nm.

Fig. 12
Fig. 12

Measured channel separation of four fiber multiplexers as a function of the fiber radius of curvature.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h 0 = 2 a + δ 0 ,
h ( z ) = [ ( h 0 + z 2 R ) 2 + y 2 ] 1 / 2 ,
c ( h ) = λ 2 π n 1 u 2 a 2 V 2 K 0 ( υ h / a ) K 1 2 ( υ ) .
η = sin 2 ( c 0 L ) ,
c 0 L = + c ( z ) d z ,
condition 1 : sin 2 ( s 1 ) = 1 or 0 ,
condition 2 : | s 2 s 1 | = π 2 + m π m = 0 , ± 1 , ± 2 ,
Δ λ = ( π / 2 ) [ ( c 0 L ) λ ] .
( c 0 L ) λ | ( s 1 s 2 ) ( λ 1 λ 2 ) | .

Metrics