Abstract

A survey is presented of the essential design considerations involved in the development of architectural thin film coatings. The report is divided into two parts: the first deals with design factors that influence the thermal performance of windows; the second deals with questions of aesthetics, especially color. A brief discussion is included of heat transfer analysis as it applies to glazings, along with an attachment of some sample graphs of heat transfer properties and their relationship to the optical properties of coated glass. Also included is an overview, with computed examples, of the various coating design types that appear to be viable at the current stage of development in this field of thin films technology.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ASHRAE Handbook, 1977 Fundamentals, Chap. 26, ASHRAE, Inc., New York (1980).
  2. D. B. Judd, G. Wyszecki, Color in Business, Science, and Industry (Wiley, New York, 1975), pp. 108–109.
  3. M. Rubin, R. Creswick, S. Selkowitz, in Proceedings, Fifth National Passive Solar Conference, U. Mass., Amherst, Mass. (Oct. 1980).
  4. H. J. Gläser, Glastech. Ber. 50, 248 (1977).
  5. H. Schroeder, in Physics of Thin Films Vol. 5, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), p. 87.
  6. P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
    [CrossRef]
  7. F. Abelès, in Optical Properties of Solids, F. Abelès, Ed. (North-Holland, Amsterdam1972), p. 93.
  8. R. Groth, Glastech. Ber. 50, 239 (1977).
  9. L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1966), pp. 504–508.
  10. P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  11. G. Hass, H. H. Schroeder, A. F. Turner, J. Opt. Soc. Am. 46, 31 (1956).
    [CrossRef]
  12. R. M. Gelber, U.S. Patent3,990,784 (1976).
  13. J. L. Vossen, in Physics of Thin Films Vol. 9, (G. Hass et al., Eds. (Academic, New York, 1977), p. 1.
  14. G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
    [CrossRef]
  15. L. Holland, G. Siddall, Br. J. Appl. Phys. 9, 359 (1958).
    [CrossRef]
  16. J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
    [CrossRef]
  17. M. M. Koltum, Sh. A. Faiziev, Geliotekhnika 10, 58 (1974).
  18. H. J. Gläser, Glass Technol. 21, 254 (1980).
  19. J. A. Pracchia, J. M. Simon, Appl. Opt. 20, 251 (1981).
    [CrossRef] [PubMed]
  20. P. H. Berning, A. F. Turner, J. Opt. Soc. Am. 47, 230 (1957).
    [CrossRef]
  21. B. V. Landau, P. H. Lissberger, J. Opt. Soc. Am. 62, 1258 (1972).
    [CrossRef]
  22. H. A. MacLeod, Opt. Acta 25, 93 (1978).
    [CrossRef]
  23. A. Herpin, C. R. Acad. Sci. 225, 182 (1947).
  24. L. I. Epstein, J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  25. A. Thelen, J. Opt. Soc. Am. 56, 1533 (1966).
    [CrossRef]
  26. J. H. Apfel, Appl. Opt. 11, 1303 (1972).
    [CrossRef] [PubMed]

1981

1980

H. J. Gläser, Glass Technol. 21, 254 (1980).

1978

H. A. MacLeod, Opt. Acta 25, 93 (1978).
[CrossRef]

1977

H. J. Gläser, Glastech. Ber. 50, 248 (1977).

R. Groth, Glastech. Ber. 50, 239 (1977).

G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
[CrossRef]

1974

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

M. M. Koltum, Sh. A. Faiziev, Geliotekhnika 10, 58 (1974).

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[CrossRef]

1972

1966

1958

L. Holland, G. Siddall, Br. J. Appl. Phys. 9, 359 (1958).
[CrossRef]

1957

1956

1952

1947

A. Herpin, C. R. Acad. Sci. 225, 182 (1947).

Abelès, F.

F. Abelès, in Optical Properties of Solids, F. Abelès, Ed. (North-Holland, Amsterdam1972), p. 93.

Apfel, J. H.

Bachner, F. J.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

Berning, P. H.

Christy, R. W.

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[CrossRef]

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Creswick, R.

M. Rubin, R. Creswick, S. Selkowitz, in Proceedings, Fifth National Passive Solar Conference, U. Mass., Amherst, Mass. (Oct. 1980).

Epstein, L. I.

Faiziev, Sh. A.

M. M. Koltum, Sh. A. Faiziev, Geliotekhnika 10, 58 (1974).

Fan, J. C. C.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

Foley, G. H.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

Gelber, R. M.

R. M. Gelber, U.S. Patent3,990,784 (1976).

Gläser, H. J.

H. J. Gläser, Glass Technol. 21, 254 (1980).

H. J. Gläser, Glastech. Ber. 50, 248 (1977).

Groth, R.

R. Groth, Glastech. Ber. 50, 239 (1977).

Haacke, G.

G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
[CrossRef]

Hass, G.

Herpin, A.

A. Herpin, C. R. Acad. Sci. 225, 182 (1947).

Holland, L.

L. Holland, G. Siddall, Br. J. Appl. Phys. 9, 359 (1958).
[CrossRef]

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1966), pp. 504–508.

Johnson, P. B.

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[CrossRef]

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Judd, D. B.

D. B. Judd, G. Wyszecki, Color in Business, Science, and Industry (Wiley, New York, 1975), pp. 108–109.

Koltum, M. M.

M. M. Koltum, Sh. A. Faiziev, Geliotekhnika 10, 58 (1974).

Landau, B. V.

Lissberger, P. H.

MacLeod, H. A.

H. A. MacLeod, Opt. Acta 25, 93 (1978).
[CrossRef]

Pracchia, J. A.

Rubin, M.

M. Rubin, R. Creswick, S. Selkowitz, in Proceedings, Fifth National Passive Solar Conference, U. Mass., Amherst, Mass. (Oct. 1980).

Schroeder, H.

H. Schroeder, in Physics of Thin Films Vol. 5, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), p. 87.

Schroeder, H. H.

Selkowitz, S.

M. Rubin, R. Creswick, S. Selkowitz, in Proceedings, Fifth National Passive Solar Conference, U. Mass., Amherst, Mass. (Oct. 1980).

Siddall, G.

L. Holland, G. Siddall, Br. J. Appl. Phys. 9, 359 (1958).
[CrossRef]

Simon, J. M.

Thelen, A.

Turner, A. F.

Vossen, J. L.

J. L. Vossen, in Physics of Thin Films Vol. 9, (G. Hass et al., Eds. (Academic, New York, 1977), p. 1.

Wyszecki, G.

D. B. Judd, G. Wyszecki, Color in Business, Science, and Industry (Wiley, New York, 1975), pp. 108–109.

Zavracky, P. M.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

Ann. Rev. Mater. Sci.

G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[CrossRef]

Br. J. Appl. Phys.

L. Holland, G. Siddall, Br. J. Appl. Phys. 9, 359 (1958).
[CrossRef]

C. R. Acad. Sci.

A. Herpin, C. R. Acad. Sci. 225, 182 (1947).

Geliotekhnika

M. M. Koltum, Sh. A. Faiziev, Geliotekhnika 10, 58 (1974).

Glass Technol.

H. J. Gläser, Glass Technol. 21, 254 (1980).

Glastech. Ber.

H. J. Gläser, Glastech. Ber. 50, 248 (1977).

R. Groth, Glastech. Ber. 50, 239 (1977).

J. Opt. Soc. Am.

Opt. Acta

H. A. MacLeod, Opt. Acta 25, 93 (1978).
[CrossRef]

Phys. Rev. B

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[CrossRef]

Other

F. Abelès, in Optical Properties of Solids, F. Abelès, Ed. (North-Holland, Amsterdam1972), p. 93.

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1966), pp. 504–508.

H. Schroeder, in Physics of Thin Films Vol. 5, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), p. 87.

ASHRAE Handbook, 1977 Fundamentals, Chap. 26, ASHRAE, Inc., New York (1980).

D. B. Judd, G. Wyszecki, Color in Business, Science, and Industry (Wiley, New York, 1975), pp. 108–109.

M. Rubin, R. Creswick, S. Selkowitz, in Proceedings, Fifth National Passive Solar Conference, U. Mass., Amherst, Mass. (Oct. 1980).

R. M. Gelber, U.S. Patent3,990,784 (1976).

J. L. Vossen, in Physics of Thin Films Vol. 9, (G. Hass et al., Eds. (Academic, New York, 1977), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1

Schematic of monolithic and double glazings.

Fig. 2
Fig. 2

Computed U-value vs emittance for coatings in single and double glazings.

Fig. 3
Fig. 3

Computed Shading Coefficient vs solar transmittance and absorptance for monolithic glazing with coating on No. 2 surface. Coated surface emittance = 0.50. (Note: As = Aos).

Fig. 4
Fig. 4

Computed Shading Coefficient vs solar transmittance and absorptance for monolithic glazing with coating on No. 2 surface—comparison for coated surface emittance = 0.05, 0.50, 0.95. (Note: As = Aos).

Fig. 5
Fig. 5

Computed Shading Coefficient vs solar transmittance and absorptance of the coated light for double glazing with coating on No. 2 surface. Coated surface emittance = 0.50. (Note: Ts = T1s; As = A1os).

Fig. 6
Fig. 6

Computed Shading Coefficient vs solar transmittance and absorptance of the coated light for double glazing with coating on No. 2 surface—comparison for coated surface emittance = 0.05, 0.50, 0.95. (Note: Ts = T1s; As = A1os).

Fig. 7
Fig. 7

Computed Shading Coefficient vs solar transmittance and absorptance of the coated light for double glazing with coating on No. 3 surface. Coated surface emittance = 0.50. (Note: Ts = T2s; As = A2os).

Fig. 8
Fig. 8

Computed Shading Coefficient vs solar transmittance and absorptance of the coated light for double glazing with coating on No. 3 surface—comparison for coated surface emittance = 0.05, 0.50, 0.95. (Note: Ts = T2s; As=A2os).

Fig. 9
Fig. 9

Wavelength distribution curves for solar air mass 2 and a blackbody at 293 K showing superposed reflectance and transmittance curves for idealized winter and summer films.

Fig. 10
Fig. 10

Computed spectral transmittance of nonabsorbing film design (A) – H – (G), where nH = 2.30, mpλ = 580 nm.

Fig. 11
Fig. 11

Computed spectral behavior of absorbing dielectric film design: (A) – H′ – (G), where nH′ = 2.30, kH′ = 0.3, mpλ = 580 nm.

Fig. 12
Fig. 12

Computed spectral transmittance for nonabsorbing multilayer film design: (A) – 0.5LHLH – (G), where nH = 2.30, nL = 1.45, mpλ = 900 nm.

Fig. 13
Fig. 13

Computed spectral behavior of the design: (G) – M – (A), where M = nickel, dM = 10 nm.

Fig. 14
Fig. 14

Computed spectral behavior of the design: (G) – M – (A), where M = nickel, dM = 20 nm.

Fig. 15
Fig. 15

Computed spectral behavior of the design: (G) – M – (A), where dM = 7.5 nm; (—)M = silver; (---)M = gold; (-·-)M = copper.

Fig. 16
Fig. 16

Computed spectral transmittance of the design: (G) – M – (A), where dM = 20 nm; (—)M = silver; (---)M = gold; (-·-)M = copper.

Fig. 17
Fig. 17

Computed spectral behavior of the design: (G) – HM – (A), where M = nickel, dM = 15 nm, nH = 2.30, mpλ = 644 nm.

Fig. 18
Fig. 18

Comparison of computed spectral transmittances for the designs: (G) – M – (A) —; (G) – M – 0.44H – (A) ---; where M = silver, dM = 10 nm, nH = 2.30, mpλ = 550 nm.

Fig. 19
Fig. 19

Computed spectral behavior of the design: (G) – 0.77HM(1) – HM(2) – (A), where M(1) = M(2) = nickel, dM(1) = 8 nm, dM(2) = 16 nm, nH = 2.30, mpλ = 488 nm.

Fig. 20
Fig. 20

Measured spectral performance of vacuum deposited indium–tin oxide conductive coating on glass.

Fig. 21
Fig. 21

Computed spectral behavior of the designs: (G) – 0.7H – Ag – 0.7H – (A) —; (G) – 0.75H – Au – 0.75H – (A) ---; (G) – 0.77H – Cu – 0.77H – (A) -·-; where dAg,Au,Cu = 7.5 nm; nH = 2.30; mpλ = 550 nm.

Fig. 22
Fig. 22

Computed spectral behavior of the designs: (G) – 0.6H – Ag – 0.6H – (A) —; (G) – 0.69H – Au – 0.69H – (A) ---; (G) – 0.69H – Cu – 0.69H – (A) -·-; where dAg,Au,Cu = 12.5 nm; nH = 2.30; mpλ = 550 nm.

Fig. 23
Fig. 23

Computed spectral transmittance of the designs: (G) – 0.77H – Ag – 0.65H – (A), where dAg = 7.5 nm —; (G) – 0.67H – Ag – 0.60H – (A), where dAg = 10 nm ---; (G) – 0.60H – Ag – 0.58H – (A), where dAg = 12.5 nm -·-; In all cases, mpλ = 550 nm.

Fig. 24
Fig. 24

Computed spectral transmittance of the designs: (G) – 0.67H – Ag – 0.60H – (A) —; (G) – 0.63H′ – Ag – 0.60H′ – (A) ---; where dAg = 10 nm, nH = 2.30, nH′ = 2.0, and mpλ = 550 nm.

Fig. 25
Fig. 25

Computed spectral behavior of the designs: (G) = 0.67H – Ag – 0.60H – (A) —; (G) – 0.90H – Ag – 0.89H – (A) ---; where dAg = 10 nm, nH = 2.30, and mpλ = 550 nm.

Fig. 26
Fig. 26

Computed spectral behavior of the double period design: (G) – (0.59H – Ag – 0.59H)2 – (A); where dAg = 14 nm, nH = 2.30, and mpλ = 550 nm.

Fig. 27
Fig. 27

Computed chromaticity coordinates (x,y) of the reflectance Ro for the design: (G) – M(1) – αHM(2) – (A), where M(1) = M(2) = nickel; dM(1) = 4 nm; dM(2) = 18 nm; and 0.5 ≤ α ≤ 6; mpλ = 550 nm.

Fig. 28
Fig. 28

Computed reflectance Ro of the designs: (G) – 1.75LGF – 4H – (A) — (1); (G) – 1.75LGF – 5H – (A) --- (2); (G) – 4H – (A) — (1′); (G) – 5H – (A) --- (2′); where LGF = approximate linearly graded-index film (n = 1.52 to 2.0); nH = 2.0; mpλ = 550 nm.

Tables (1)

Tables Icon

Table I Computed Integrated Optical Properties for Theoretical Architectural Coating Designs Shown in Figs. 1026

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

= 0 W ( λ ) 0 π / 2 A ( λ , θ 0 ) sin 2 θ 0 d θ 0 d λ 0 W ( λ ) d λ ,
T s = 0 T ( λ ) S ( λ ) d λ 0 S ( λ ) d λ ,
T c = 0 T ( λ ) V ( λ ) C ( λ ) d λ 0 V ( λ ) C ( λ ) d λ ,
( A ) α H β L M ( 1 ) H M ( 2 ) ( G ) ,
R max = ( n G n F 2 ) 2 ( n G + n F 2 ) 2 ,
R = R g + ( 1 R g ) 2 R m exp ( 2 α g ) ,

Metrics