Abstract

Unwanted path length variations cause integrated optical Mach-Zehnder modulators to have random intrinsic phase and directional couplers to have uncertain coupling lengths. The feasibility of tuning these devices by modifying the propagation constant with Ta2O5 loading of Ti:LiNbO3 waveguides was studied. The intrinsic phase of a Mach-Zehnder modulator was adjusted by this method.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mikami, S. Zembutsu, Appl. Phys. Lett. 35, 38 (1979).
    [CrossRef]
  2. F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).
  3. C. H. Bulmer, W. K. Burns, R. P. Moeller, in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Soc. of America, Washington, D.C., 1980), paper TuC4.
  4. M. J. Ahmed, L. Young, Appl. Opt. 19, 3050 (1980).
    [CrossRef] [PubMed]
  5. M. J. Ahmed, L. Young, Appl. Opt. 19, 3051 (1980).
    [CrossRef] [PubMed]
  6. O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
    [CrossRef]
  7. J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).
  8. P. K. Tien, G. Smolinsky, R. J. Martin, Appl. Opt. 11, 637 (1972).
    [CrossRef] [PubMed]
  9. R. Ulrich, H. P. Weber, Appl. Opt. 11, 428 (1972).
    [CrossRef] [PubMed]
  10. R. B. McGraw, F. Zernike, at Seventy-sixth, Annual Meeting, American Ceramic Society, Chicago, 28 Apr.−2 May 1974.
  11. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  12. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  13. J. L. Jackel, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper WB4.
  14. D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 10, 1037 (1971).
    [CrossRef] [PubMed]
  15. M. Fujimori, M. Sasaki, M. Honda, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1972), paper TuA2.
  16. N. Uchida, O. Mikami, S. Uehara, J. Noda, Appl. Opt. 15, 455 (1976).
    [CrossRef] [PubMed]
  17. N. Uchida, Appl. Opt. 15, 179 (1976).
    [CrossRef] [PubMed]
  18. J. Noda, S. Zembutsu, S. Fukunishi, N. Uchida, Appl. Opt. 17, 1953 (1978).
    [CrossRef] [PubMed]
  19. E. M. Conwell, Appl. Phys. Lett. 23, (1973).
    [CrossRef]
  20. M. J. Ahmed, Ph.D. Thesis, The University of British Columbia, Vancouver (1981).
  21. T. Tamir, Ed., Integrated Optics (Springer, New York, 1979), p. 108.
  22. G. B. Hocker, W. K. Burns, Appl. Opt. 16, 113 (1977).
    [CrossRef] [PubMed]
  23. V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).
  24. H. Furuta, H. Noda, A. Ihaya, Appl. Opt. 13, 322 (1974).
    [CrossRef] [PubMed]
  25. M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
    [CrossRef]

1980 (2)

1979 (2)

O. Mikami, S. Zembutsu, Appl. Phys. Lett. 35, 38 (1979).
[CrossRef]

F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).

1978 (1)

1977 (3)

G. B. Hocker, W. K. Burns, Appl. Opt. 16, 113 (1977).
[CrossRef] [PubMed]

O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
[CrossRef]

M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
[CrossRef]

1976 (2)

1974 (2)

H. Furuta, H. Noda, A. Ihaya, Appl. Opt. 13, 322 (1974).
[CrossRef] [PubMed]

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

1973 (1)

E. M. Conwell, Appl. Phys. Lett. 23, (1973).
[CrossRef]

1972 (2)

1971 (2)

1969 (2)

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ahmed, M. J.

Bulmer, C. H.

C. H. Bulmer, W. K. Burns, R. P. Moeller, in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Soc. of America, Washington, D.C., 1980), paper TuC4.

Burns, W. K.

G. B. Hocker, W. K. Burns, Appl. Opt. 16, 113 (1977).
[CrossRef] [PubMed]

C. H. Bulmer, W. K. Burns, R. P. Moeller, in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Soc. of America, Washington, D.C., 1980), paper TuC4.

Conwell, E. M.

E. M. Conwell, Appl. Phys. Lett. 23, (1973).
[CrossRef]

Cuthbert, J. D.

Fujimori, M.

M. Fujimori, M. Sasaki, M. Honda, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1972), paper TuA2.

Fukunishi, S.

J. Noda, S. Zembutsu, S. Fukunishi, N. Uchida, Appl. Opt. 17, 1953 (1978).
[CrossRef] [PubMed]

O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
[CrossRef]

Furuta, H.

Goell, J. E.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Hensler, D. H.

Hocker, G. B.

Honda, M.

M. Fujimori, M. Sasaki, M. Honda, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1972), paper TuA2.

Ihaya, A.

Jackel, J. L.

J. L. Jackel, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper WB4.

Leonberger, F. J.

F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).

Martin, R. J.

McGraw, R. B.

R. B. McGraw, F. Zernike, at Seventy-sixth, Annual Meeting, American Ceramic Society, Chicago, 28 Apr.−2 May 1974.

Mikami, O.

O. Mikami, S. Zembutsu, Appl. Phys. Lett. 35, 38 (1979).
[CrossRef]

O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
[CrossRef]

N. Uchida, O. Mikami, S. Uehara, J. Noda, Appl. Opt. 15, 455 (1976).
[CrossRef] [PubMed]

Moeller, R. P.

C. H. Bulmer, W. K. Burns, R. P. Moeller, in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Soc. of America, Washington, D.C., 1980), paper TuC4.

Noda, H.

Noda, J.

Ostrowsky, D. B.

M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
[CrossRef]

Papuchon, M.

M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

Roy, A.

M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
[CrossRef]

Sasaki, M.

M. Fujimori, M. Sasaki, M. Honda, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1972), paper TuA2.

Smolinsky, G.

Spears, D. L.

F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).

Standley, R. D.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Tien, P. K.

Uchida, N.

Uehara, S.

Ulrich, R.

R. Ulrich, H. P. Weber, Appl. Opt. 11, 428 (1972).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Weber, H. P.

Woodward, C. E.

F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).

Young, L.

Zembutsu, S.

O. Mikami, S. Zembutsu, Appl. Phys. Lett. 35, 38 (1979).
[CrossRef]

J. Noda, S. Zembutsu, S. Fukunishi, N. Uchida, Appl. Opt. 17, 1953 (1978).
[CrossRef] [PubMed]

O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
[CrossRef]

Zernike, F.

R. B. McGraw, F. Zernike, at Seventy-sixth, Annual Meeting, American Ceramic Society, Chicago, 28 Apr.−2 May 1974.

Appl. Opt. (11)

Appl. Phys. Lett. (5)

O. Mikami, S. Zembutsu, Appl. Phys. Lett. 35, 38 (1979).
[CrossRef]

O. Mikami, J. Noda, S. Zembutsu, S. Fukunishi, Appl. Phys. Lett. 31, 376 (1977).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, (1973).
[CrossRef]

M. Papuchon, A. Roy, D. B. Ostrowsky, Appl. Phys. Lett. 31, 266 (1977).
[CrossRef]

Bell Syst. Tech. J. (2)

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. J. Leonberger, C. E. Woodward, D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 28 (1979).

Other (6)

C. H. Bulmer, W. K. Burns, R. P. Moeller, in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Soc. of America, Washington, D.C., 1980), paper TuC4.

R. B. McGraw, F. Zernike, at Seventy-sixth, Annual Meeting, American Ceramic Society, Chicago, 28 Apr.−2 May 1974.

M. J. Ahmed, Ph.D. Thesis, The University of British Columbia, Vancouver (1981).

T. Tamir, Ed., Integrated Optics (Springer, New York, 1979), p. 108.

J. L. Jackel, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper WB4.

M. Fujimori, M. Sasaki, M. Honda, in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1972), paper TuA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Location of the Ta2O5 loading film on the Mach-Zehnder modulator.

Fig. 2
Fig. 2

Refractive-index profile of an optical waveguide loaded by a film.

Fig. 3
Fig. 3

Application of the effective index method: (a) representation of the waveguide under consideration; (b) and (c) planar waveguide and effective indices, with film n1 f and without film n1 a ; (d) and (e) inclusion of the width constraint, effective indices, with film n2 f and without film n2 a .

Fig. 4
Fig. 4

Effective index vs d for planar (n1 f and n1 a ) and for finite width waveguide (n2 f and n2 a ) with and without film for TE00 mode with nf = 2.2134, Δn = 0.02, and t = 0.1 μm.

Fig. 5
Fig. 5

Effective index n2 a vs d with w as parameter, for TE00 and TE11 modes, with film thickness t = 0.

Fig. 6
Fig. 6

Change in the propagation constant as a function of loading film thickness with Δn as a parameter for the TE00 mode with nf = 2.2134, d = 2 μm, and w = 4 μm and with Δn = 0.04 and nf = 2.2038 for TM00 mode.

Fig. 7
Fig. 7

Change (n2 f n2 a ) in effective index due to loading film thickness t, with the film index nf as parameter, for the TE00 mode with w = 4 μm.

Fig. 8
Fig. 8

Sputtered Ta over the Ti-indiffused waveguide prior to Al lift-off.

Fig. 9
Fig. 9

(a) Applied triangular voltage and the modulator response before treatment in oxygen; ψ1 = 56°. (b) Applied triangular voltage and the modulator response after 11 min of treatment in oxygen; ψ2 = 111°. (c) Applied triangular voltage and the modulator response after 52 min of treatment in oxygen; ψ3 = 400°.

Tables (1)

Tables Icon

Table I Comparison of the Properties of Films at λ = 0.6328-μm for TE Modes

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I 0 = I i 2 [ 1 + cos ( η KLV + ψ + ϕ ) ] ,
ϕ = ( β 2 f β 2 a ) L 1 = 2 π λ ( n 2 f n 2 a ) L 1 ,
n ( x ) = n a < x < t , = n f t < x < 0 , = n s + Δ n exp ( x / d ) 0 < x < ,
J V 1 ( g ) J V + 1 ( g ) J V ( g ) = p i λ π ( 2 n s Δ n ) 1 / 2 ,
g = 2 d k ( 2 n s Δ n ) 1 / 2 exp ( x / d ) ,
V = 2 d k ( n 1 2 n s 2 ) 1 / 2 ,
p i = ( k 2 n 1 2 i ω 2 c 2 ) 1 / 2 .
J V 1 ( g ) J V + 1 ( g ) J V ( g ) = 2 ( n f 2 n 1 2 ) 1 / 2 ( 2 n s Δ n ) 1 / 2 S tan t ( n f 2 n 1 2 ) 1 / 2 1 + S tan t ( n f 2 n 1 2 ) 1 / 2 ,
S = ( n 1 2 n a 2 ) 1 / 2 / ( n f 2 n 1 2 ) 1 / 2 .
J V 1 ( g ) J V + 1 ( g ) J V ( g ) = 2 ( n 1 2 n f 2 ) 1 / 2 ( 2 n s Δ n ) 1 / 2 S + tanh t ( n 1 2 n f 2 ) 1 / 2 1 + S tanh t ( n 1 2 n f 2 ) 1 / 2 ,
S = ( n 1 2 n a 2 ) 1 / 2 / ( n 1 2 n f 2 ) 1 / 2 .
J V 1 ( g ) J V + 1 ( g ) J V ( g ) + ( 2 n s Δ n ) 1 / 2 dk n s 2 = ( n s n i ) 2 2 p i k ( 2 n s Δ n ) 1 / 2 ( 1 + 2 Δ n n s ) .
J V 1 ( g ) J V + 1 ( g ) J V ( g ) + ( 2 n s Δ n ) 1 / 2 dk n s 2 = ( n s n f ) 2 2 ( n f 2 n 1 2 ) 1 / 2 ( 2 n s Δ n ) 1 / 2 × ξ S tan t k f 1 + ξ S tan t k f ( 1 + 2 Δ n n s ) ,
ξ = ( n f / n a ) 2 ,
k f = k ( n f 2 n 1 2 ) 1 / 2 .
J V 1 ( g ) J V + 1 ( g ) J V ( g ) + ( 2 n s Δ n ) 1 / 2 d k n s 2 = ( n s n f ) 2 2 ( n 1 2 n f 2 ) 1 / 2 ( 2 n s Δ n ) 1 / 2 ξ S + tanh t k f 1 + ξ S tanh t k f ( 1 + 2 Δ n n s ) ,
S = ( n 1 2 n a 2 ) 1 / 2 / ( n 1 2 n f 2 ) 1 / 2 ,
k f = k ( n 1 2 n f 2 ) 1 / 2 .
b 2 w = 2 tan 1 ( ζ V s / b 2 ) + q π ,
b 2 = k ( n 1 2 n 2 2 ) 1 / 2 ,
V s = k ( n 2 2 n s 2 ) 1 / 2 ,
ζ = { ( n 1 / n s ) 2 , for the TE q modes , 1 , for the TM q modes .
δ ψ = δ β L = ( 2 π λ δ n 2 f ) L = 42 ° / mm .

Metrics