Abstract

A semiautomatic method is described for measuring, fast and accurately, the mode propagation losses of planar or channel waveguides for integrated optical circuits. It involves a video camera aided by a microcomputer, and the real-time measurement is feasible over a broad range from low loss (<1 dB/cm) to high loss (of the order of 102 dB/cm). We examined the propagation properties of several optical waveguides prepared by sputtering or ion migration.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Keck, A. R. Tynes, Appl. Opt. 11, 1502 (1972).
    [CrossRef] [PubMed]
  2. M. K. Barnoski, S. M. Jensen, Appl. Opt. 15, 2112 (1976).
    [CrossRef] [PubMed]
  3. F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).
  4. J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).
  5. Y. Akao, T. Miyazaki, “Nonreciprocal Devices,” in Optical Guided-Wave Electronics, H. Yanai, T. Makimoto, Eds. (Maruzen, Tokyo, 1981), in Japanese.
  6. C. W. Pitt, Electron. Lett. 9, 401 (1973).
    [CrossRef]
  7. T. G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, R. A. Andrews, Appl. Opt. 12, 1240 (1973).
    [CrossRef] [PubMed]
  8. A. Reisinger, Appl. Opt. 12, 1015 (1973).
    [CrossRef] [PubMed]
  9. J. Nishizawa, A. Otsuka, “Focusing-Type Integrated Optics,” in Proceedings, Symposium on Optical and Acoustical Micro-Electronics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 23.

1976

1973

1972

1971

F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).

1969

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Akao, Y.

Y. Akao, T. Miyazaki, “Nonreciprocal Devices,” in Optical Guided-Wave Electronics, H. Yanai, T. Makimoto, Eds. (Maruzen, Tokyo, 1981), in Japanese.

Andrews, R. A.

Barnoski, M. K.

Douglas, J. W.

F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).

Giallorenzi, T. G.

Ginther, R.

Goell, J. E.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Jensen, S. M.

Keck, D. B.

Kirk, R.

Miyazaki, T.

Y. Akao, T. Miyazaki, “Nonreciprocal Devices,” in Optical Guided-Wave Electronics, H. Yanai, T. Makimoto, Eds. (Maruzen, Tokyo, 1981), in Japanese.

Nishizawa, J.

J. Nishizawa, A. Otsuka, “Focusing-Type Integrated Optics,” in Proceedings, Symposium on Optical and Acoustical Micro-Electronics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 23.

Olson, D. R.

F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).

Otsuka, A.

J. Nishizawa, A. Otsuka, “Focusing-Type Integrated Optics,” in Proceedings, Symposium on Optical and Acoustical Micro-Electronics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 23.

Pitt, C. W.

C. W. Pitt, Electron. Lett. 9, 401 (1973).
[CrossRef]

Reisinger, A.

Standley, R. D.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Tynes, A. R.

West, E. J.

Zernike, F.

F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).

Appl. Opt.

Bell Syst. Tech. J.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Electron. Lett.

C. W. Pitt, Electron. Lett. 9, 401 (1973).
[CrossRef]

J. Opt. Soc. Am.

F. Zernike, J. W. Douglas, D. R. Olson, J. Opt. Soc. Am. 61, 678 (1971).

Other

J. Nishizawa, A. Otsuka, “Focusing-Type Integrated Optics,” in Proceedings, Symposium on Optical and Acoustical Micro-Electronics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 23.

Y. Akao, T. Miyazaki, “Nonreciprocal Devices,” in Optical Guided-Wave Electronics, H. Yanai, T. Makimoto, Eds. (Maruzen, Tokyo, 1981), in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement for measuring the mode propagation loss of the integrated optical waveguide.

Fig. 2
Fig. 2

(a) Photograph of the light streak in a Ag-ion migrated waveguide with TE0 mode excitation on the video monitor. Light is coupled into the waveguide at the unseen left-hand side. (b) Two-dimensional light intensity profiles along the propagation direction of the light streak in (a). (c) Power scattered out of the waveguide as a function of the propagation length of the light streak in (a).

Fig. 3
Fig. 3

Two-dimensional light intensity profiles for the sputtered film waveguide with TE0 mode excitation.

Fig. 4
Fig. 4

Scattered power vs the propagation length for the ion-migrated waveguide with TE0 mode launching at two different positions.

Fig. 5
Fig. 5

Scattered power as a function of the propagation length for the metal-clad waveguide with TM0 mode launching at an unclad guide. The scale of the abscissa is a tenth of that of Fig. 2(c).

Fig. 6
Fig. 6

Spatial mode beating in the multimode graded-index waveguide with simultaneous TE7 and TE8 modes excitation. The period of the beat corresponds to the inverse of the difference of the propagation constant of the two excited modes.

Metrics