Abstract

The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (∼2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Krumpholz, F. Westermann, in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), paper 7.7.
  2. G. Grosskopf et al., Electron Lett. 18, 493 (1982).
    [CrossRef]
  3. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  4. M. Shirasaki, K. Asama, Appl. Opt. 21, 4296 (1982).
    [CrossRef] [PubMed]
  5. W. Bludau, R. Rossberg, Appl. Opt. 21, 1933 (1982).
    [CrossRef] [PubMed]
  6. M. Saruwatari, K. Nawata, Appl. Opt. 18, 1847 (1979).
    [CrossRef] [PubMed]
  7. G. Khoe, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 6.1.
  8. L. G. Cohen, M. V. Schneider, Appl. Opt. 13, 89 (1974).
    [CrossRef] [PubMed]
  9. G. Eisenstein, D. Vitello, Appl. Opt. 21, 3470 (1982).
    [CrossRef] [PubMed]
  10. P. D. Bear, Appl. Opt. 19, 2906 (1980).
    [CrossRef] [PubMed]
  11. H. Sakaguchi et al., Electron Lett. 17, 425 (1981).
    [CrossRef]
  12. J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
    [CrossRef]
  13. H. Kuwahara, M. Sasaki, N. Tokoyo, Appl. Opt. 19, 2578 (1980).
    [CrossRef] [PubMed]
  14. T. G. Giallorenzi et al., IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  15. G. Wenke, G. Elze, J. Opt. Commun. 2, 128 (1981).
  16. T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
    [CrossRef]
  17. R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
    [CrossRef]

1983

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

1982

1981

H. Sakaguchi et al., Electron Lett. 17, 425 (1981).
[CrossRef]

G. Wenke, G. Elze, J. Opt. Commun. 2, 128 (1981).

1980

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

H. Kuwahara, M. Sasaki, N. Tokoyo, Appl. Opt. 19, 2578 (1980).
[CrossRef] [PubMed]

P. D. Bear, Appl. Opt. 19, 2906 (1980).
[CrossRef] [PubMed]

1979

M. Saruwatari, K. Nawata, Appl. Opt. 18, 1847 (1979).
[CrossRef] [PubMed]

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
[CrossRef]

1974

Asama, K.

Bear, P. D.

Bludau, W.

Cohen, L. G.

Devlin, W. J.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Eisenstein, G.

Elze, G.

G. Wenke, G. Elze, J. Opt. Commun. 2, 128 (1981).

Giallorenzi, T. G.

T. G. Giallorenzi et al., IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Grosskopf, G.

G. Grosskopf et al., Electron Lett. 18, 493 (1982).
[CrossRef]

Kanada, T.

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
[CrossRef]

Khoe, G.

G. Khoe, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 6.1.

Kobayashi, K.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Krumpholz, O.

O. Krumpholz, F. Westermann, in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), paper 7.7.

Kuwahara, H.

Lang, R.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Nawata, K.

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
[CrossRef]

M. Saruwatari, K. Nawata, Appl. Opt. 18, 1847 (1979).
[CrossRef] [PubMed]

Rossberg, R.

Sakaguchi, H.

H. Sakaguchi et al., Electron Lett. 17, 425 (1981).
[CrossRef]

Saruwatari, M.

Sasaki, M.

Schneider, M. V.

Shirasaki, M.

Tokoyo, N.

Vitello, D.

Wenke, G.

G. Wenke, G. Elze, J. Opt. Commun. 2, 128 (1981).

Westermann, F.

O. Krumpholz, F. Westermann, in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), paper 7.7.

Wyatt, R.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Yamada, J.

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

Appl. Opt.

Electron Lett.

G. Grosskopf et al., Electron Lett. 18, 493 (1982).
[CrossRef]

H. Sakaguchi et al., Electron Lett. 17, 425 (1981).
[CrossRef]

Electron. Lett.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

IEEE J. Quantum Electron.

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
[CrossRef]

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

T. G. Giallorenzi et al., IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

J. Opt. Commun.

G. Wenke, G. Elze, J. Opt. Commun. 2, 128 (1981).

Other

G. Khoe, in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 6.1.

O. Krumpholz, F. Westermann, in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), paper 7.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Main sources of optical feedback in a fiber-optic transmission line.

Fig. 2
Fig. 2

Measured periodic power change ΔP and wavelength change Δλ as a function of the laser–fiber distance z.

Fig. 3
Fig. 3

Measurement arrangement for the investigation of laser distortions caused by optical feedback: 1, measurement of coupling efficiency and distortions of the transmitted power; 2, investigation of baseband phase changes due to laser wavelength distortion in case of optical feedback; 3, registration of laser power in coupling conditions.

Fig. 4
Fig. 4

Investigated fiber faces: 1, plane end (butt joint); 2, bead (flame polished plane end); 3, microlens; 4, etched taper; 5, drawn taper.

Fig. 5
Fig. 5

Scanning electron micrographs of the investigated fiber faces described in Fig. 4.

Fig. 6
Fig. 6

(a) Coupling efficiency and displacement tolerance parallel to the junction plane; (b) same as (a) perpendicular to the junction plane. 1–5 are described in Fig. 4. 6, corresponds to two Selfoc lenses and a plane fiber end. The coupling efficiencies include the laser power change in the respective coupling conditions.

Fig. 7
Fig. 7

Optimization of a drawn taper ∼300 μm long. The front radius is gradually enlarged.

Fig. 8
Fig. 8

Far-field pattern of a single-mode fiber illuminated from the opposite end for a plane end and an optimized taper.

Fig. 9
Fig. 9

Power changes when coupling into three different fiber faces, and when using Selfoc lenses. The power is measured behind 3.5-km fiber as a function of the laser–fiber distance z.

Fig. 10
Fig. 10

Power changes ΔP normalized to the power PO of the uncoupled laser measured at the laser back facet as a function of the laser–fiber distance z.

Fig. 11
Fig. 11

Same as in Fig. 10 measured over 3.5-km fiber.

Fig. 12
Fig. 12

Measured phase changes Δϕ over 3.5-km fiber and corresponding laser wavelength changes Δλ as a function of the laser-fiber distance z.

Fig. 13
Fig. 13

Phase changes around the optimum coupling distances of the respective coupling methods I/Ith = 1.08.

Fig. 14
Fig. 14

Same as Fig. 13 for I/Ith = 1.17.

Tables (1)

Tables Icon

Table I Summary of Optimum Coupling Distance, Coupling Efficiency, and –1-dB Tolerance of the Respective Coupling Methods and Their Influence on Laser Power and Wavelength

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W 0 = λ / [ π tan ( π θ / 180 ) ] ,
R = R 0 + 2 ( 1 R 0 ) r R 0 cos ψ ,
f = r F / ( n F 1 ) ,

Metrics