Abstract

A photosensor element suitable for incorporation into charge-coupled device (CCD) imaging arrays in which the charge injected into the CCD is proportional to the logarithm of incident light intensity is presented. The photosensor element consists of a photodiode directly coupled to a two-stage MOSFET common source amplifier. This element occupies an area of 25 × 100 μm and is arranged so that it could be incorporated into a linear CCD imaging array having a period of 25 μm. A logarithmic response is measured over a 68.6-dB range of incident light intensity with a sensitivity of 55 mV/decade of light intensity.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Thompsett, C. H. Sequin, Charge Transfer Devices (Academic, New York, 1975).
  2. R. H. Dyck, “Design, Fabrication, and Performance of CCD Imagers,” in VLSI Electronics Microstructure Science, Vol. 3, N. G. Einspruch, Ed. (Academic Press, New York, 1982), pp. 65–107.
  3. R. Rappaport, RCA Rev. 21, 373 (1959).
  4. C. H. Sequin, A. M. Mohsen, IEEE J. Solid-State Circuits SC-10, 81 (1975).
    [CrossRef]
  5. K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
    [CrossRef]
  6. S. Horiuchi, R. Blanchard, Solid-State Electron. 18, 529 (1975).
    [CrossRef]

1975

C. H. Sequin, A. M. Mohsen, IEEE J. Solid-State Circuits SC-10, 81 (1975).
[CrossRef]

K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
[CrossRef]

S. Horiuchi, R. Blanchard, Solid-State Electron. 18, 529 (1975).
[CrossRef]

1959

R. Rappaport, RCA Rev. 21, 373 (1959).

Blanchard, R.

S. Horiuchi, R. Blanchard, Solid-State Electron. 18, 529 (1975).
[CrossRef]

Dyck, R. H.

R. H. Dyck, “Design, Fabrication, and Performance of CCD Imagers,” in VLSI Electronics Microstructure Science, Vol. 3, N. G. Einspruch, Ed. (Academic Press, New York, 1982), pp. 65–107.

Horiuchi, S.

S. Horiuchi, R. Blanchard, Solid-State Electron. 18, 529 (1975).
[CrossRef]

Mohsen, A. M.

C. H. Sequin, A. M. Mohsen, IEEE J. Solid-State Circuits SC-10, 81 (1975).
[CrossRef]

Rappaport, R.

R. Rappaport, RCA Rev. 21, 373 (1959).

Sequin, C. H.

C. H. Sequin, A. M. Mohsen, IEEE J. Solid-State Circuits SC-10, 81 (1975).
[CrossRef]

M. F. Thompsett, C. H. Sequin, Charge Transfer Devices (Academic, New York, 1975).

Shimakura, K.

K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
[CrossRef]

Suzuki, T.

K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
[CrossRef]

Thompsett, M. F.

M. F. Thompsett, C. H. Sequin, Charge Transfer Devices (Academic, New York, 1975).

Yadoiwa, Y.

K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
[CrossRef]

IEEE J. Solid-State Circuits

C. H. Sequin, A. M. Mohsen, IEEE J. Solid-State Circuits SC-10, 81 (1975).
[CrossRef]

RCA Rev.

R. Rappaport, RCA Rev. 21, 373 (1959).

Solid-State Electron.

K. Shimakura, T. Suzuki, Y. Yadoiwa, Solid-State Electron. 18, 991 (1975).
[CrossRef]

S. Horiuchi, R. Blanchard, Solid-State Electron. 18, 529 (1975).
[CrossRef]

Other

M. F. Thompsett, C. H. Sequin, Charge Transfer Devices (Academic, New York, 1975).

R. H. Dyck, “Design, Fabrication, and Performance of CCD Imagers,” in VLSI Electronics Microstructure Science, Vol. 3, N. G. Einspruch, Ed. (Academic Press, New York, 1982), pp. 65–107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the log-converting CCD sensor element.

Fig. 2
Fig. 2

Circuit diagram of the log-converting CCD sensor element.

Fig. 3
Fig. 3

Photograph of log-converting CCD sensor element test circuit after fabrication.

Fig. 4
Fig. 4

Clock waveforms and timing diagram for the CCD stage.

Fig. 5
Fig. 5

Transfer curve of the log-converting CCD sensor element.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I S + I 0 [ 1 exp ( q V mkT ) ] ,
V = mkT q ln ( I 0 + I s I 0 ) .
V = mkT q ln ( I s I 0 ) .
V out = V DD 2 V T 3 A V 2 · ( V DD 1 V T 1 V T 4 ) + A V 1 · A V 2 ( V in V P ) ,

Metrics