Abstract

Moiré technique by means of projected fringes is a suitable method for full field measurements of out-of-plane deformations and object contouring. One disadvantage in industrial applications has been the photographic process with the involved time-consuming development of the photographic film. This paper presents a new method using a TV camera and a digital image processor whereby real-time measurements of deformations and comparison of object contours are possible. Also the principles and limitations of the projected Moiré method are described.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Brooks, L. O. Heflinger, Appl. Opt. 8, 935 (1969).
    [CrossRef] [PubMed]
  2. J. Der Hovanesian, Y. Y. Hung, Appl. Opt. 10, 2734 (1971).
    [CrossRef]
  3. W. T. Welford, Opt. Acta 16, 371 (1969).
    [CrossRef]
  4. C. A. Miles, B. S. Speight, J. Phys. 8, 773 (1975).
  5. J. Wasowski, Opt. Commun. 2, 321 (1970).
    [CrossRef]
  6. P. Benoit et al., Nouv. Rev. Opt. 6, 67 (1975).
    [CrossRef]
  7. B. Dessus, M. Leblanc, Opto-electronics 5, 369 (1973).
    [CrossRef]
  8. B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
    [CrossRef]
  9. C. M. Vest, D. W. Sweeney, Appl. Opt. 11, 449 (1972).
    [CrossRef] [PubMed]
  10. Y. Yoshino, M. Tsukiji, H. Takasaki, Appl. Opt. 15, 2414 (1976).
    [CrossRef] [PubMed]
  11. M. Halioua, R. S. Krishnamurthy, H. Liu, F. P. Chiang, Appl. Opt. 22, 850 (1983).
    [CrossRef] [PubMed]
  12. K. G. Harding, J. S. Harris, Appl. Opt. 22, 856 (1983).
    [CrossRef] [PubMed]
  13. G. Windischbauer, A. Cabaj, G. Keck, 1. Jahrestagung der ost. Ges. f. Biomed. Technik, Graz, May (1976).
  14. H. Kugel, F. Lanzl, in Holography in Medicine and Biology, G. V. Bally, Ed. (Springer, Berlin, 1979).
  15. T. Ikeda, H. Terada, Opt. Laser Technol. 13, 302 (1981).
    [CrossRef]
  16. T. Yatagai et al., Opt. Eng. 21, 901 (1982).
  17. H. E. Cline, A. S. Holik, W. E. Lorensen, Appl. Opt. 21, 4481 (1982).
    [CrossRef] [PubMed]
  18. E. Vikhagen, Diploma Thesis, U. Trondheim (Dec.1982).
  19. K. J. Gasvik, U. R. Christiansen, O. J. Løkberg, ELAB Report, STF44 A81008, U. Trondheim (Jan.1981).

1983 (2)

1982 (2)

1981 (1)

T. Ikeda, H. Terada, Opt. Laser Technol. 13, 302 (1981).
[CrossRef]

1976 (1)

1975 (3)

C. A. Miles, B. S. Speight, J. Phys. 8, 773 (1975).

P. Benoit et al., Nouv. Rev. Opt. 6, 67 (1975).
[CrossRef]

B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
[CrossRef]

1973 (1)

B. Dessus, M. Leblanc, Opto-electronics 5, 369 (1973).
[CrossRef]

1972 (1)

1971 (1)

1970 (1)

J. Wasowski, Opt. Commun. 2, 321 (1970).
[CrossRef]

1969 (2)

Benoit, P.

P. Benoit et al., Nouv. Rev. Opt. 6, 67 (1975).
[CrossRef]

Brooks, R. E.

Cabaj, A.

G. Windischbauer, A. Cabaj, G. Keck, 1. Jahrestagung der ost. Ges. f. Biomed. Technik, Graz, May (1976).

Chiang, F. P.

Christiansen, U. R.

K. J. Gasvik, U. R. Christiansen, O. J. Løkberg, ELAB Report, STF44 A81008, U. Trondheim (Jan.1981).

Cline, H. E.

Der Hovanesian, J.

Dessus, B.

B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
[CrossRef]

B. Dessus, M. Leblanc, Opto-electronics 5, 369 (1973).
[CrossRef]

Gasvik, K. J.

K. J. Gasvik, U. R. Christiansen, O. J. Løkberg, ELAB Report, STF44 A81008, U. Trondheim (Jan.1981).

Gerardin, J. P.

B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
[CrossRef]

Halioua, M.

Harding, K. G.

Harris, J. S.

Heflinger, L. O.

Holik, A. S.

Hung, Y. Y.

Ikeda, T.

T. Ikeda, H. Terada, Opt. Laser Technol. 13, 302 (1981).
[CrossRef]

Keck, G.

G. Windischbauer, A. Cabaj, G. Keck, 1. Jahrestagung der ost. Ges. f. Biomed. Technik, Graz, May (1976).

Krishnamurthy, R. S.

Kugel, H.

H. Kugel, F. Lanzl, in Holography in Medicine and Biology, G. V. Bally, Ed. (Springer, Berlin, 1979).

Lanzl, F.

H. Kugel, F. Lanzl, in Holography in Medicine and Biology, G. V. Bally, Ed. (Springer, Berlin, 1979).

Leblanc, M.

B. Dessus, M. Leblanc, Opto-electronics 5, 369 (1973).
[CrossRef]

Liu, H.

Løkberg, O. J.

K. J. Gasvik, U. R. Christiansen, O. J. Løkberg, ELAB Report, STF44 A81008, U. Trondheim (Jan.1981).

Lorensen, W. E.

Miles, C. A.

C. A. Miles, B. S. Speight, J. Phys. 8, 773 (1975).

Mousselet, P.

B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
[CrossRef]

Speight, B. S.

C. A. Miles, B. S. Speight, J. Phys. 8, 773 (1975).

Sweeney, D. W.

Takasaki, H.

Terada, H.

T. Ikeda, H. Terada, Opt. Laser Technol. 13, 302 (1981).
[CrossRef]

Tsukiji, M.

Vest, C. M.

Vikhagen, E.

E. Vikhagen, Diploma Thesis, U. Trondheim (Dec.1982).

Wasowski, J.

J. Wasowski, Opt. Commun. 2, 321 (1970).
[CrossRef]

Welford, W. T.

W. T. Welford, Opt. Acta 16, 371 (1969).
[CrossRef]

Windischbauer, G.

G. Windischbauer, A. Cabaj, G. Keck, 1. Jahrestagung der ost. Ges. f. Biomed. Technik, Graz, May (1976).

Yatagai, T.

T. Yatagai et al., Opt. Eng. 21, 901 (1982).

Yoshino, Y.

Appl. Opt. (7)

J. Phys. (1)

C. A. Miles, B. S. Speight, J. Phys. 8, 773 (1975).

Nouv. Rev. Opt. (1)

P. Benoit et al., Nouv. Rev. Opt. 6, 67 (1975).
[CrossRef]

Opt. Acta (1)

W. T. Welford, Opt. Acta 16, 371 (1969).
[CrossRef]

Opt. Commun. (1)

J. Wasowski, Opt. Commun. 2, 321 (1970).
[CrossRef]

Opt. Eng. (1)

T. Yatagai et al., Opt. Eng. 21, 901 (1982).

Opt. Laser Technol. (1)

T. Ikeda, H. Terada, Opt. Laser Technol. 13, 302 (1981).
[CrossRef]

Opt. Quantum Electron. (1)

B. Dessus, J. P. Gerardin, P. Mousselet, Opt. Quantum Electron. 7, 15 (1975).
[CrossRef]

Opto-electronics (1)

B. Dessus, M. Leblanc, Opto-electronics 5, 369 (1973).
[CrossRef]

Other (4)

E. Vikhagen, Diploma Thesis, U. Trondheim (Dec.1982).

K. J. Gasvik, U. R. Christiansen, O. J. Løkberg, ELAB Report, STF44 A81008, U. Trondheim (Jan.1981).

G. Windischbauer, A. Cabaj, G. Keck, 1. Jahrestagung der ost. Ges. f. Biomed. Technik, Graz, May (1976).

H. Kugel, F. Lanzl, in Holography in Medicine and Biology, G. V. Bally, Ed. (Springer, Berlin, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fringe projection by means of interference between two plane waves with propagation directions n1 and n2.

Fig. 2
Fig. 2

Fringe projection by means of interference between two point sources P1 and P2.

Fig. 3
Fig. 3

Fringe projection by means of grating imaging.

Fig. 4
Fig. 4

Sensitivity Δz vs angle of incidence θ with α and fx as parameters; α is in degrees, fx in lines/mm.

Fig. 5
Fig. 5

Experimental setup; L1 = projection lens,

Fig. 6
Fig. 6

(a) Propeller blade, 56 cm × 70 cm, with a dummy at its center. Contour interval is 0.75 mm. (b) Cartridge casing with a dent. Contour interval is 0.15 mm.

Fig. 7
Fig. 7

(a) Deformations due to filling of water of a 25-liter oil can. Contour interval is 0.45 mm. (b) Deformations of a 100-cm × 40-cm panel heater due to 2-min warm-up. Contour interval is 0.50 mm.

Fig. 8
Fig. 8

(a) Nonflatness of a 15-m × 3-m plate. Contour interval at the center is 3.5 mm. (b) Same as (a) with the camera lens zoomed in on the central bulge. Contour interval is 1.4 mm.

Fig. 9
Fig. 9

Time average recordings of vibrations in a 400-mm diam 1-mm thick aluminum plate excited at a point in the lower right edge. (a) Frequency is 250 Hz. Amplitude corresponding to the first dark fringe is 0.16 mm. (b) Frequency is 960 Hz. Amplitude corresponding to the first dark fringe is 0.06 mm.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I = 2 ( 1 + cos ϕ ) ,
ϕ = k ( n 1 n 2 ) r = 2 π d ( x cos θ + z sin θ ) ,
d = λ 2 sin ( α / 2 ) .
d x = d cos θ
f x = 1 d x = cos θ d .
I 1 I 2 = 2 ( 1 + cos ϕ 1 ) 2 ( 1 + cos ϕ 2 ) = 4 sin ϕ 2 ϕ 1 2 sin ϕ 2 + ϕ 1 2 = 4 sin [ π d ( z 2 z 1 ) sin θ ] × sin [ 2 π d ( x cos θ + z 1 + z 2 2 sin θ ) ] .
4 sin [ π d ( z 2 z 1 ) sin θ ] .
Δ z n = z 2 z 1 = n d sin θ .
d 0 = λ 2 sin ( α 0 / 2 ) λ 2 tan ( α 0 / 2 ) = λ 2 ( a / r 0 ) ,
Δ z 0 = d 0 sin θ 0 = λ 2 ( a x 0 / r 0 2 ) ,
d x 0 = d 0 cos θ 0 = λ 2 ( a z 0 / r 0 2 ) .
θ = β 1 + β 2 2 , d = λ 2 sin ( α / 2 ) = λ 2 sin β 1 β 2 2 ,
Δ z = d sin θ = λ 2 sin β 1 β 2 2 sin β 1 + β 2 2 = λ cos β 2 cos β 1 = λ ( z 2 / r 2 ) ( z 1 / z 1 ) ,
d x = d cos θ = λ 2 sin β 1 β 2 2 cos β 1 + β 2 2 = λ sin β 1 sin β 2 = λ x 1 + x r 1 x 2 + x r 2 .
Δ z = λ z 2 z 1 r = λ 2 a sin θ 0 r = Δ z 0 ( r r 0 ) ,
d x = λ x 1 x 2 r = λ 2 a cos θ 0 r = d x 0 ( r r 0 ) .
r ( ± X ) r 0 = ( x 0 ± X ) 2 + z 0 2 r 0 = [ sin θ 0 ± ( X / r 0 ) ] 2 + cos 2 θ 0 .
d 0 = m p d g = l f d g ,
Δ z = 1 f x tan θ ,
Δ z l = 4 × 10 5 w ,
Δ z l = 4 × 10 4 w .

Metrics