Abstract

The role of trapped radiation transport losses on the performance of dye doped PMMA planar luminscent solar concentrators has been studied. A simple method has been devised to separate experimentally transport losses from the initial conversion losses in the collector, and it was shown that transport losses presently prevent luminscent solar concentrators from achieving useful intensity concentrations. An experimental and theoretical study of individual transport losses showed that matrix absorption and scattering and imperfect total internal reflection are the dominant transport losses at present. It was concluded that intensity concentrations of 100 for AM1 solar radiation should be possible in the near future and that the theoretical limit on intensity concentration was ∼1000.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, J. Lambe, Appl. Opt. 15, 2299 (1976).
    [CrossRef] [PubMed]
  2. W. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
    [CrossRef]
  3. A. Goetzberger, O. Schirmer, Appl. Phys. 19, 53 (1979).
    [CrossRef]
  4. K. Heidler, Appl. Opt. 20, 773 (1981).
    [CrossRef] [PubMed]
  5. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 18, 3090 (1979).
    [CrossRef] [PubMed]
  6. J. M. Drake, M. L. Lesiecki, J. Sansregret, W. R. L. Thomas, Appl. Opt. 21, 2945 (1982).
    [CrossRef] [PubMed]
  7. J. Sansregret, J. M. Drake, W. R. L. Thomas, M. L. Lesiecki, Appl. Opt. 22, 573 (1983).
    [CrossRef] [PubMed]
  8. H. C. Hottel, B. B. Woertz, Trans. ASME 69, 91 (1982).
  9. R. W. Bliss, Sol. Energy 3, 55 (1959).
    [CrossRef]
  10. B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
    [CrossRef]
  11. T. Kaino, M. Fuyiki, S. Oikawa, S. Nara, Appl. Opt. 20, 2886 (1981).
    [CrossRef] [PubMed]
  12. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 20, 3733 (1981).
    [CrossRef] [PubMed]
  13. A. Einstein, Ann. Phys. Leipzig 30, 775 (1908).
  14. P. Debye, Ann. Phys. Leipzig 30, 775 (1909).
  15. M. V. Smoluchowski, Ann. Phys. Leipzig 25, 203 (1908).
  16. P. Debye, J. Appl. Phys. 15, 338 (1944).
    [CrossRef]
  17. P. Debye, A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  19. E. P. Roth, A. J. Anaya, Trans. ASME 102, 248 (1980).
    [CrossRef]

1983 (1)

1982 (2)

1981 (3)

1980 (2)

E. P. Roth, A. J. Anaya, Trans. ASME 102, 248 (1980).
[CrossRef]

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

1979 (2)

1977 (1)

W. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

1976 (1)

1959 (1)

R. W. Bliss, Sol. Energy 3, 55 (1959).
[CrossRef]

1949 (1)

P. Debye, A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

1944 (1)

P. Debye, J. Appl. Phys. 15, 338 (1944).
[CrossRef]

1909 (1)

P. Debye, Ann. Phys. Leipzig 30, 775 (1909).

1908 (2)

M. V. Smoluchowski, Ann. Phys. Leipzig 25, 203 (1908).

A. Einstein, Ann. Phys. Leipzig 30, 775 (1908).

Anaya, A. J.

E. P. Roth, A. J. Anaya, Trans. ASME 102, 248 (1980).
[CrossRef]

Batchelder, J. S.

Bliss, R. W.

R. W. Bliss, Sol. Energy 3, 55 (1959).
[CrossRef]

Bueche, A. M.

P. Debye, A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Cole, T.

Crist, B.

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

Debye, P.

P. Debye, A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

P. Debye, J. Appl. Phys. 15, 338 (1944).
[CrossRef]

P. Debye, Ann. Phys. Leipzig 30, 775 (1909).

Drake, J. M.

Einstein, A.

A. Einstein, Ann. Phys. Leipzig 30, 775 (1908).

Epstein, M.

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

Fuyiki, M.

Goetzberger, A.

A. Goetzberger, O. Schirmer, Appl. Phys. 19, 53 (1979).
[CrossRef]

Goetzberger, W.

W. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

Greubel, W.

W. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

Heidler, K.

Hottel, H. C.

H. C. Hottel, B. B. Woertz, Trans. ASME 69, 91 (1982).

Kaino, T.

Lambe, J.

Lesiecki, M. L.

Marhic, M. E.

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

Nara, S.

Oikawa, S.

Raviv, G.

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

Roth, E. P.

E. P. Roth, A. J. Anaya, Trans. ASME 102, 248 (1980).
[CrossRef]

Sansregret, J.

Schirmer, O.

A. Goetzberger, O. Schirmer, Appl. Phys. 19, 53 (1979).
[CrossRef]

Smoluchowski, M. V.

M. V. Smoluchowski, Ann. Phys. Leipzig 25, 203 (1908).

Thomas, W. R. L.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Weber, W. H.

Woertz, B. B.

H. C. Hottel, B. B. Woertz, Trans. ASME 69, 91 (1982).

Zewail, A. H.

Ann. Phys. Leipzig (3)

A. Einstein, Ann. Phys. Leipzig 30, 775 (1908).

P. Debye, Ann. Phys. Leipzig 30, 775 (1909).

M. V. Smoluchowski, Ann. Phys. Leipzig 25, 203 (1908).

Appl. Opt. (7)

Appl. Phys. (3)

W. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

A. Goetzberger, O. Schirmer, Appl. Phys. 19, 53 (1979).
[CrossRef]

B. Crist, M. E. Marhic, G. Raviv, M. Epstein, Appl. Phys. 51, 1160 (1980).
[CrossRef]

J. Appl. Phys. (2)

P. Debye, J. Appl. Phys. 15, 338 (1944).
[CrossRef]

P. Debye, A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Sol. Energy (1)

R. W. Bliss, Sol. Energy 3, 55 (1959).
[CrossRef]

Trans. ASME (2)

H. C. Hottel, B. B. Woertz, Trans. ASME 69, 91 (1982).

E. P. Roth, A. J. Anaya, Trans. ASME 102, 248 (1980).
[CrossRef]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Apparatus for measuring the angular dependence of the matrix scattering loss.

Fig. 2
Fig. 2

Apparatus for determining the total internal reflection loss per bounce in a PLSC collector plate.

Fig. 3
Fig. 3

Collection performance for two types of illumination source.

Fig. 4
Fig. 4

Performance scaling of a PLSC as a function of collector plate size.

Fig. 5
Fig. 5

Performance of individual PLSC layers doped with DCM, fluorol 555, and rhodamine 640. Data used to determine transport loss properties of each plate.

Fig. 6
Fig. 6

Experimental configuration for determining the transport loss for individual layers of a PLSC collector.

Fig. 7
Fig. 7

Transport loss data determined for dye doped PMMA plates using the method shown in Fig. 6.

Fig. 8
Fig. 8

Comparison of the transport losses determined for the dye doped PMMA plates, fluorol 555, DCM, and rhodamine 640 using the intercept technique with the values obtained from the moving slit technique.

Fig. 9
Fig. 9

Variation in the edge emission intensity with and without edge mirrors when separately illuminating 1/9 segments of the PLSC plate.

Fig. 10
Fig. 10

Scattering probability vs angle for DCM in PMMA.

Fig. 11
Fig. 11

Scattering in DCM doped PMMA.

Tables (1)

Tables Icon

Table I Loss Factor fL and Corresponding Concentration Limit for Different Loss Mechanisms

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

P I = P L + P T .
P I = f in I S A C ,
P L = A C d η T C σ ext E p ,
P I = I T [ A C k ( σ ext d ) + f out A out ] .
C g = A c / ( A out ) ,
C i = I T f out I s = I out I s .
f L = σ ext d ,
f in 1 C i = k f L f out + 1 C g .
η opt = f in k f L f out C i ,
η opt = C i C g = I out A out A c I s .
η opt , mult = f in k f ̅ L f out C ̅ i ,
f ̅ L = j = 1 N f L ( j ) I out ( j ) j = 1 N I out ( j ) ,
C ̅ i = j = 1 N I out ( j ) N I s .
f in = ( 1 R ) η trap η qua η Stok η abs .
η opt = f in ( k f L f out ) C i ,
B = ( k f L f out ) ,
τ = 8 π 3 3 k T β λ 0 4 ( μ 2 1 ) 2 ,
τ = 32 3 μ 0 2 ( μ 2 μ 0 ) 2 λ 0 4 1 n ,
α 0 ( r ) = Δ μ ( A ) Δ μ ( B ) = exp ( r / a ) ,
I ( θ ) ( 1 + K 2 s 2 a 2 ) 2 ,
s = 2 sin ( θ / 2 ) .
I ( θ ) S sin θ ,
τ = 1.54 % / cm , a = 1474 A ˚ , Δ μ ̅ 2 = 7.9 × 10 4 .
τ = 0.019 % / cm , a = 1500 A ˚ , Δ μ ̅ 2 = 1.6 × 10 4 .
X = n π r 2 .
V 1 = ( 4 / 3 ) r 3 n ,
n ( r ) 2 × 10 2 r 2 ( cm 3 ) ,
F A = 0 π n ( r ) r 2 d r .
F A = 7 × 10 2 r max .
π Δ 2 T = k T ,
I T = K 4 V 2 [ ( μ 2 μ 1 ) 1 ] 2 2 I 0 3 π ,
V = ( A Δ ) / 2 ,
I p = I 0 A cos I ,
δ β = I T I p = K 4 A Δ 2 [ ( μ 2 / μ 1 ) 1 ] 2 6 π cos I .
δ β 8 μ 2 k T [ ( μ 2 / μ 1 ) 1 ] 2 3 λ 2 T cos I .

Metrics