Abstract

The use of hole gratings in small-spot laser damage testing is discussed. If the intensity loss due to the transmission of the grating and due to the production of several spots can be tolerated, a hole grating is shown to increase the ease of establishing a damage threshold by the production of spots with a wide range of intensities whose ratios are well understood. It allows the investigation of defect-related damage since several regions are illuminated with equal intensities, and it permits the investigation of the effects of several closely spaced simultaneous illuminations. Several types of arrays of circles and ellipses are investigated, and the effects of hole size, hole spacing, hole shape, and elliptical hole orientation are discussed. The effects of apertures of the grating are also discussed. Two methods of suppression of diffraction spots lying outside the Airy disk are described and illustrated which utilize distributions of either circular hole sizes or of elliptical hole orientations. Two arrays are used in damage tests of metal surfaces to illustrate their use.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.
  2. J. E. Harvey, M. L. Scott, Opt. Eng. 20, 881 (1981);M. J. Scott, private communication.
    [CrossRef]
  3. M. S. Scholl, Proc. Soc. Photo-Opt. Instrum. Eng. 293, 74 (1971).
  4. L. C. Marquet, Appl. Opt. 10, 960 (1971).
    [CrossRef] [PubMed]
  5. T. A. Wiggins, T. T. Saito, J. A. Hosken, Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. (1982), to be published.
  6. See, for example, S. G. Lipson, H. Lipson, Optical Physics (Cambridge U.P., London, 1969), Chap. 7,M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), Chap. 8.
  7. J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, New York, 1978).
  8. S. A. Self, Appl. Opt. 22, 658 (1983).
    [CrossRef] [PubMed]
  9. J. R. Palmer, “Continuous Wave (cw) Laser Damage in Optics,” Opt. Eng.22 (1983); to be published.
  10. P. Jacquinot, B. Roizen-Dossier, Prog. Opt. 3, 31 (1964).
  11. B. D. Steinberg, Principles of Aperture and Array System Design (Wiley, New York, 1976).
  12. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry (Longmans, New York, 1980).
  13. Buckbee-Mears Co., 245 E. 6th Street, St. Paul, Minn. 55101
  14. A. D. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1981), Chap. 8.
  15. C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966),J. E. Mack, M. J. Martin, The Photographic Process (McGraw-Hill, New York, 1939).
  16. I. M. Winer, Appl. Opt. 5, 1437 (1966).
    [CrossRef] [PubMed]

1983

1981

J. E. Harvey, M. L. Scott, Opt. Eng. 20, 881 (1981);M. J. Scott, private communication.
[CrossRef]

1980

T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.

1971

M. S. Scholl, Proc. Soc. Photo-Opt. Instrum. Eng. 293, 74 (1971).

L. C. Marquet, Appl. Opt. 10, 960 (1971).
[CrossRef] [PubMed]

1966

1964

P. Jacquinot, B. Roizen-Dossier, Prog. Opt. 3, 31 (1964).

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, New York, 1978).

Guenther, A. H.

T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.

Harvey, J. E.

J. E. Harvey, M. L. Scott, Opt. Eng. 20, 881 (1981);M. J. Scott, private communication.
[CrossRef]

Hosken, J. A.

T. A. Wiggins, T. T. Saito, J. A. Hosken, Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. (1982), to be published.

Jacquinot, P.

P. Jacquinot, B. Roizen-Dossier, Prog. Opt. 3, 31 (1964).

James, T. H.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966),J. E. Mack, M. J. Martin, The Photographic Process (McGraw-Hill, New York, 1939).

Lipson, H.

See, for example, S. G. Lipson, H. Lipson, Optical Physics (Cambridge U.P., London, 1969), Chap. 7,M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), Chap. 8.

Lipson, S. G.

See, for example, S. G. Lipson, H. Lipson, Optical Physics (Cambridge U.P., London, 1969), Chap. 7,M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), Chap. 8.

Marquet, L. C.

Mees, C. E. K.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966),J. E. Mack, M. J. Martin, The Photographic Process (McGraw-Hill, New York, 1939).

Palmer, J. R.

J. R. Palmer, “Continuous Wave (cw) Laser Damage in Optics,” Opt. Eng.22 (1983); to be published.

Roizen-Dossier, B.

P. Jacquinot, B. Roizen-Dossier, Prog. Opt. 3, 31 (1964).

Saito, T. T.

T. A. Wiggins, T. T. Saito, J. A. Hosken, Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. (1982), to be published.

Scholl, M. S.

M. S. Scholl, Proc. Soc. Photo-Opt. Instrum. Eng. 293, 74 (1971).

Scott, M. L.

J. E. Harvey, M. L. Scott, Opt. Eng. 20, 881 (1981);M. J. Scott, private communication.
[CrossRef]

Self, S. A.

Siegman, A. D.

A. D. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1981), Chap. 8.

Sneddon, I. N.

I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry (Longmans, New York, 1980).

Steinberg, B. D.

B. D. Steinberg, Principles of Aperture and Array System Design (Wiley, New York, 1976).

Walker, T. W.

T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.

Wiggins, T. A.

T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.

T. A. Wiggins, T. T. Saito, J. A. Hosken, Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. (1982), to be published.

Winer, I. M.

Appl. Opt.

Natl. Bur. Stand. (U.S.) Spec. Publ.

T. A. Wiggins, T. W. Walker, A. H. Guenther, Natl. Bur. Stand. (U.S.) Spec. Publ. 620 (1980), p. 277.

Opt. Eng.

J. E. Harvey, M. L. Scott, Opt. Eng. 20, 881 (1981);M. J. Scott, private communication.
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

M. S. Scholl, Proc. Soc. Photo-Opt. Instrum. Eng. 293, 74 (1971).

Prog. Opt.

P. Jacquinot, B. Roizen-Dossier, Prog. Opt. 3, 31 (1964).

Other

B. D. Steinberg, Principles of Aperture and Array System Design (Wiley, New York, 1976).

I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry (Longmans, New York, 1980).

Buckbee-Mears Co., 245 E. 6th Street, St. Paul, Minn. 55101

A. D. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1981), Chap. 8.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966),J. E. Mack, M. J. Martin, The Photographic Process (McGraw-Hill, New York, 1939).

T. A. Wiggins, T. T. Saito, J. A. Hosken, Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. (1982), to be published.

See, for example, S. G. Lipson, H. Lipson, Optical Physics (Cambridge U.P., London, 1969), Chap. 7,M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), Chap. 8.

J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, New York, 1978).

J. R. Palmer, “Continuous Wave (cw) Laser Damage in Optics,” Opt. Eng.22 (1983); to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Common logarithm of the calculated intensity as a function of angle for randomly oriented ellipses of ɛ = 0.90 is shown as a dotted line. The solid line gives values for a circle having a radius the same as the semimajor axis of an ellipse. Unity on the abscissa is the angle for the first zero for a circular hole.

Fig. 2
Fig. 2

Common logarithm of the calculated intensity as a function of angle for three circles of size and population as specified in the text is shown as a solid line. Also shown as a dotted line are values for a circle having a radius the same as the intermediately sized circle. Unity on the abscissa is the angle for the first zero of this circle.

Fig. 3
Fig. 3

Common logarithm of the intensity near an interference maximum for an array of 349 circles within a circular area whose diameter includes 21 circles. The solid line shows the result when all circles have the same intensity, the dotted curve is for B = 0.98, the dot-dash curve for B = 0.97. Unity on the abscissa would correspond to the angle for an interference maximum.

Fig. 4
Fig. 4

Observed patterns near the focal point of a lens for an array of 1-cm aperture illuminated by a nearly uniform beam. (A) and (B) show results for a square array of d/a = 3.2 and 3.6, (C) and (D) for 60° arrays for d/a = 3.5 and 5.1.

Fig. 5
Fig. 5

Patterns produced by the same arrays as used in Fig. 4(C) and (D) but with different apertures. For (A) and (B), the aperture was determined by the lens, and essentially all the incident beam was included. Halation causes the diffuse regions around the most intense spots. (C) is for a circular aperture of 0.5-cm diam, and (D) is for a sauare 1-cm aDerture.

Fig. 6
Fig. 6

Patterns produced when the arrays used in Fig. 4(A) and (B) were tipped with respect to the direction of illumination. The aperture is again 1 cm. (C) shows the pattern produced by ellipses of eccentricity 0.75 with a 1-cm square aperture. (D) shows the result if the directions of the ellipse axes, ɛ = 0.90, are given random orientations, the aperture being large compared with the illuminated area.

Fig. 7
Fig. 7

Patterns produced by arrays of circles whose spacing is in the ratio of 2:1 along two perpendicular directions. (A) shows the result for the case of circles of equal radii, while (B) shows the result for circles having three different radii, the intermediate radius being the same as the equal radii in (A). (C) and (D) show the arrays used to produce the patterns shown in Figs. 6(D) and 7(B), respectively.

Fig. 8
Fig. 8

Damage produced on diamond-turned metal surfaces, (A) using the 60° array as used in Fig. 5(A) on nickel, (B) using the 90° array as used in Fig. 5(B) on copper. The distances between the intense spots are 350 and 510 μm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A 2 = 1 + 2 A R + 2 A S + 4 A R A S ,
A R = r = 1 R F r cos ( 2 r π M ) and A S = S = 0 S G s cos ( 2 s π N ) .
A 2 = 1 + 2 r = 1 R cos ( 2 r π M ) + 2 s = 1 S cos ( 6 s π N ) + 4 r = 1 R cos [ ( 2 r 1 ) π M ] s = 1 S cos [ 3 ( 2 s 1 ) π N ] + 4 r = 1 R cos ( 2 r π M ) s = 1 S cos ( 6 s π N ) .

Metrics