Abstract

A reversible optical storage medium with more than 4 × 104 write/erase cycles has been realized using a low-doped Te film of composition Te96.8As3.0Ge0.2 encapsulated by a thick capping layer. A number of properties relevant to its storage application were also determined experimentally: the sensitivity range for writing (0.3–4 nJ) and erasing (34–40 nJ), the contrast of the readout signal (2:1), the limit for the erasing time (≈ 10 μsec), the bit permanence (3 weeks), and the readout signal behavior during writing and erasing.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Ovshinsky, U.S. Patent3,530,441(1970).
  2. J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
    [CrossRef]
  3. R. J. von Gutfeld, P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).
    [CrossRef]
  4. A. W. Smith, Appl. Opt. 13, 795 (1974).
    [CrossRef] [PubMed]
  5. A. E. Bell, Laser Focus 18, No. 7, 28 (1982).
  6. A. E. Bell, Opt. Mem. Newsl., 4 (Mar.–Apr.1982).
  7. M. Chen, V. Marello, J. Vac. Sci. Technol. 18, 75 (1981).
    [CrossRef]
  8. A. E. Bell, F. W. Spong, Appl. Phys. Lett. 38, 920 (1981).
    [CrossRef]
  9. H. K. Pulker, Appl. Opt. 18, 1969 (1979).
    [CrossRef] [PubMed]
  10. P. M. Asbeck et al., Appl. Phys. Lett. 34, 835 (1979).
    [CrossRef]
  11. K. Bulthuis et al., IEEE Spectrum, 26 (Aug.1979).
  12. B. R. Brown, Appl. Opt. 13, 761 (1974).
    [CrossRef] [PubMed]
  13. D. R. Haberland, “Über das Schaltverhalten von halbleitendem Glas,” Dissertation TU München (1970), pp. 71 and72.
  14. D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

1982 (3)

A. E. Bell, Laser Focus 18, No. 7, 28 (1982).

A. E. Bell, Opt. Mem. Newsl., 4 (Mar.–Apr.1982).

D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

1981 (2)

M. Chen, V. Marello, J. Vac. Sci. Technol. 18, 75 (1981).
[CrossRef]

A. E. Bell, F. W. Spong, Appl. Phys. Lett. 38, 920 (1981).
[CrossRef]

1979 (3)

H. K. Pulker, Appl. Opt. 18, 1969 (1979).
[CrossRef] [PubMed]

P. M. Asbeck et al., Appl. Phys. Lett. 34, 835 (1979).
[CrossRef]

K. Bulthuis et al., IEEE Spectrum, 26 (Aug.1979).

1974 (2)

1972 (1)

R. J. von Gutfeld, P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).
[CrossRef]

1971 (1)

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

Asbeck, P. M.

P. M. Asbeck et al., Appl. Phys. Lett. 34, 835 (1979).
[CrossRef]

Bell, A. E.

A. E. Bell, Laser Focus 18, No. 7, 28 (1982).

A. E. Bell, Opt. Mem. Newsl., 4 (Mar.–Apr.1982).

A. E. Bell, F. W. Spong, Appl. Phys. Lett. 38, 920 (1981).
[CrossRef]

Brown, B. R.

Bulthuis, K.

K. Bulthuis et al., IEEE Spectrum, 26 (Aug.1979).

Chaudhari, P.

R. J. von Gutfeld, P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).
[CrossRef]

Chen, M.

M. Chen, V. Marello, J. Vac. Sci. Technol. 18, 75 (1981).
[CrossRef]

Chen, T.

D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

Cheng, D.

D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

de Neufville, J.

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

Feinleib, J.

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

Haberland, D. R.

D. R. Haberland, “Über das Schaltverhalten von halbleitendem Glas,” Dissertation TU München (1970), pp. 71 and72.

Marello, V.

M. Chen, V. Marello, J. Vac. Sci. Technol. 18, 75 (1981).
[CrossRef]

Moss, S. C.

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

Ovshinsky, S. R.

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

S. R. Ovshinsky, U.S. Patent3,530,441(1970).

Pulker, H. K.

Smith, A. W.

Spong, F. W.

A. E. Bell, F. W. Spong, Appl. Phys. Lett. 38, 920 (1981).
[CrossRef]

Treves, D.

D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

von Gutfeld, R. J.

R. J. von Gutfeld, P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

A. E. Bell, F. W. Spong, Appl. Phys. Lett. 38, 920 (1981).
[CrossRef]

P. M. Asbeck et al., Appl. Phys. Lett. 34, 835 (1979).
[CrossRef]

J. Feinleib, J. de Neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).
[CrossRef]

IEEE Spectrum (1)

K. Bulthuis et al., IEEE Spectrum, 26 (Aug.1979).

J. Appl. Phys. (1)

R. J. von Gutfeld, P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).
[CrossRef]

J. Vac. Sci. Technol. (1)

M. Chen, V. Marello, J. Vac. Sci. Technol. 18, 75 (1981).
[CrossRef]

Laser Focus (1)

A. E. Bell, Laser Focus 18, No. 7, 28 (1982).

Opt. Mem. Newsl. (1)

A. E. Bell, Opt. Mem. Newsl., 4 (Mar.–Apr.1982).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Cheng, D. Treves, T. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 329, 223 (1982).

Other (2)

D. R. Haberland, “Über das Schaltverhalten von halbleitendem Glas,” Dissertation TU München (1970), pp. 71 and72.

S. R. Ovshinsky, U.S. Patent3,530,441(1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the storage medium.

Fig. 2
Fig. 2

Setup for the write, read, and erase experiments.

Fig. 3
Fig. 3

Detector signal (transmission of the memory location) vs writing energy for an exposure time of 20 nsec.

Fig. 4
Fig. 4

Detector signal (transmission of the memory location) vs erasing energy for an exposure time of 10 μsec. At minimum signal level (reversal point at 39 nJ) complete crystallization is reached.

Fig. 5
Fig. 5

Reversal points of the detector signal, i.e., maximum attainable degree of crystallization (see Fig. 4), as a function of erasing time.

Fig. 6
Fig. 6

Direct readout during erasing. Erasing energy 39 nJ.

Fig. 7
Fig. 7

Direct readout during writing. Writing energy 2.0 nJ.

Fig. 8
Fig. 8

Cycles (a) 1–50 and (b) 5250–5300.

Fig. 9
Fig. 9

Cycles 40300–40400 for a material with a particularly thick (1100-nm) capping layer.

Tables (1)

Tables Icon

Table I Lifetimes of the Amorphous Phase for Te Films with Different Doping Levels

Metrics