Abstract

Optical gains as small as 2 × 10−5 are detectable by placing the gain medium inside the cavity of a cw dye laser and operating the laser slightly above threshold to take advantage of moderate spatial hole burning. This technique was used to measure gain on the 40′ → 6″, 7″, and 8″ transitions in optically pumped Br2.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
    [CrossRef]
  2. R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
    [CrossRef]
  3. M. J. Taylor, G. R. Hanes, K. M. Baird, J. Opt. Soc. Am. 54, 1310 (1964).
    [CrossRef]
  4. Yu. V. Troitskii, V. P. Chebotaev, Opt. Spektrosk. 20, 362 (1966), Opt. Spectrosc. 20, 199 (1966).
  5. J. R. Fendley, IEEE J. Quantum Electron. 4, 627 (1968).
    [CrossRef]
  6. A. W. Johnson, J. B. Gerardo, J. Appl. Phys. 46, 4870 (1975).
    [CrossRef]
  7. G. Marowsky, F. K. Tittel, W. L. Wilson, E. Frenkel, Appl. Opt. 19, 138 (1980).
    [CrossRef] [PubMed]
  8. M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
    [CrossRef]
  9. K. A. Truesdell, R. A. Keller, E. F. Zalewski, J. Chem. Phys. 73, 1117 (1980).
    [CrossRef]
  10. R. A. Keller, K. A. Truesdell, J. Chem. Phys. 75, 4271 (1981).
    [CrossRef]
  11. J. M. Herbelin et al., Appl. Opt. 19, 144 (1980).
    [CrossRef] [PubMed]
  12. J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
    [CrossRef]
  13. F. J. Wodarczyk, H. R. Schlossberg, J. Chem. Phys. 67, 4476 (1977).
    [CrossRef]
  14. Exciton Chemical Co. Catalog, P.O. Box 3204, Overlook Station, Dayton, Ohio 45431.
  15. J. A. Coxon, J. Mol. Spectrosc. 37, 39 (1971) and W. Holzer, W. F. Murphy, H. J. Bernstein, J. Chem. Phys. 52, 469 (1970).
    [CrossRef]
  16. S. H. Dworetsky, R. S. Hozack, J. Chem. Phys. 59, 3856 (1973).
    [CrossRef]
  17. R. M. Lum, R. S. Hozack, J. Mol. Spectrosc. 58, 325 (1975).
    [CrossRef]
  18. M. Kroll, D. Swanson, Chem. Phys. Lett. 9, 115 (1971).
    [CrossRef]
  19. G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
    [CrossRef]
  20. B. A. Palmer, R. A. Keller, R. Engleman, Los Alamos National Laboratory Report LA-8251-MS (1980).
  21. J. D. Simmons, R. A. Keller, Appl. Opt. 12, 2033 (1973).
    [CrossRef]
  22. C. T. Pike, Opt. Commun. 10, 14 (1974).
    [CrossRef]
  23. S. J. Harris, General Motors Corp., Seminar, Los Alamos National Laboratory, 1981.
  24. I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
    [CrossRef]
  25. G. Marowsky, K. Kaufmann, IEEE J. Quantum Electron. QE-12, 207 (1976).
    [CrossRef]
  26. H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
    [CrossRef]
  27. R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
    [CrossRef]
  28. M. A. A. Clyne, M. C. Heaven, Trans. Faraday Soc. 74, 1992 (1978).
    [CrossRef]
  29. J. B. Koffend, R. W. Field, J. Appl. Phys. 48, 4468 (1977).
    [CrossRef]
  30. K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
    [CrossRef]
  31. J. Tellinghuisen, J. Chem. Phys. 58, 2821 (1973).
    [CrossRef]
  32. J. Tellinghuisen, J. Quant. Spectrosc. Radiat. Transfer 19, 149 (1978).
    [CrossRef]

1981 (1)

R. A. Keller, K. A. Truesdell, J. Chem. Phys. 75, 4271 (1981).
[CrossRef]

1980 (3)

1979 (2)

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
[CrossRef]

1978 (3)

J. Tellinghuisen, J. Quant. Spectrosc. Radiat. Transfer 19, 149 (1978).
[CrossRef]

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

M. A. A. Clyne, M. C. Heaven, Trans. Faraday Soc. 74, 1992 (1978).
[CrossRef]

1977 (3)

J. B. Koffend, R. W. Field, J. Appl. Phys. 48, 4468 (1977).
[CrossRef]

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

F. J. Wodarczyk, H. R. Schlossberg, J. Chem. Phys. 67, 4476 (1977).
[CrossRef]

1976 (2)

J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
[CrossRef]

G. Marowsky, K. Kaufmann, IEEE J. Quantum Electron. QE-12, 207 (1976).
[CrossRef]

1975 (4)

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
[CrossRef]

R. M. Lum, R. S. Hozack, J. Mol. Spectrosc. 58, 325 (1975).
[CrossRef]

A. W. Johnson, J. B. Gerardo, J. Appl. Phys. 46, 4870 (1975).
[CrossRef]

1974 (2)

C. T. Pike, Opt. Commun. 10, 14 (1974).
[CrossRef]

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

1973 (4)

J. Tellinghuisen, J. Chem. Phys. 58, 2821 (1973).
[CrossRef]

J. D. Simmons, R. A. Keller, Appl. Opt. 12, 2033 (1973).
[CrossRef]

S. H. Dworetsky, R. S. Hozack, J. Chem. Phys. 59, 3856 (1973).
[CrossRef]

M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
[CrossRef]

1971 (2)

J. A. Coxon, J. Mol. Spectrosc. 37, 39 (1971) and W. Holzer, W. F. Murphy, H. J. Bernstein, J. Chem. Phys. 52, 469 (1970).
[CrossRef]

M. Kroll, D. Swanson, Chem. Phys. Lett. 9, 115 (1971).
[CrossRef]

1968 (1)

J. R. Fendley, IEEE J. Quantum Electron. 4, 627 (1968).
[CrossRef]

1966 (1)

Yu. V. Troitskii, V. P. Chebotaev, Opt. Spektrosk. 20, 362 (1966), Opt. Spectrosc. 20, 199 (1966).

1964 (1)

Bacis, R.

K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
[CrossRef]

Baird, K. M.

Barrow, R. F.

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

Chebotaev, V. P.

Yu. V. Troitskii, V. P. Chebotaev, Opt. Spektrosk. 20, 362 (1966), Opt. Spectrosc. 20, 199 (1966).

Clark, T. C.

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

Clyne, M. A. A.

M. A. A. Clyne, M. C. Heaven, Trans. Faraday Soc. 74, 1992 (1978).
[CrossRef]

Coxon, J. A.

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

J. A. Coxon, J. Mol. Spectrosc. 37, 39 (1971) and W. Holzer, W. F. Murphy, H. J. Bernstein, J. Chem. Phys. 52, 469 (1970).
[CrossRef]

Dienes, A.

M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
[CrossRef]

Dworetsky, S. H.

G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
[CrossRef]

S. H. Dworetsky, R. S. Hozack, J. Chem. Phys. 59, 3856 (1973).
[CrossRef]

Engleman, R.

B. A. Palmer, R. A. Keller, R. Engleman, Los Alamos National Laboratory Report LA-8251-MS (1980).

Feld, M. S.

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

Fendley, J. R.

J. R. Fendley, IEEE J. Quantum Electron. 4, 627 (1968).
[CrossRef]

Field, R. W.

K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
[CrossRef]

J. B. Koffend, R. W. Field, J. Appl. Phys. 48, 4468 (1977).
[CrossRef]

Frenkel, E.

Frohlich, D.

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Fugger, B.

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Fulghum, S. F.

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

Gerardo, J. B.

A. W. Johnson, J. B. Gerardo, J. Appl. Phys. 46, 4870 (1975).
[CrossRef]

Hanes, G. R.

Harris, S. J.

S. J. Harris, General Motors Corp., Seminar, Los Alamos National Laboratory, 1981.

Heaven, M. C.

M. A. A. Clyne, M. C. Heaven, Trans. Faraday Soc. 74, 1992 (1978).
[CrossRef]

Herbelin, J. M.

Herman, I. P.

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

Hertel, I. V.

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Hill, R. M.

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

Hozack, R. S.

G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
[CrossRef]

R. M. Lum, R. S. Hozack, J. Mol. Spectrosc. 58, 325 (1975).
[CrossRef]

S. H. Dworetsky, R. S. Hozack, J. Chem. Phys. 59, 3856 (1973).
[CrossRef]

Huestis, P. L.

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

Javan, A.

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

Johnson, A. W.

A. W. Johnson, J. B. Gerardo, J. Appl. Phys. 46, 4870 (1975).
[CrossRef]

Kaufmann, K.

G. Marowsky, K. Kaufmann, IEEE J. Quantum Electron. QE-12, 207 (1976).
[CrossRef]

Keller, R. A.

R. A. Keller, K. A. Truesdell, J. Chem. Phys. 75, 4271 (1981).
[CrossRef]

K. A. Truesdell, R. A. Keller, E. F. Zalewski, J. Chem. Phys. 73, 1117 (1980).
[CrossRef]

J. D. Simmons, R. A. Keller, Appl. Opt. 12, 2033 (1973).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, Los Alamos National Laboratory Report LA-8251-MS (1980).

Klein, M. B.

M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
[CrossRef]

Koffend, J. B.

J. B. Koffend, R. W. Field, J. Appl. Phys. 48, 4468 (1977).
[CrossRef]

Koffend, K. B.

K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
[CrossRef]

Kroll, M.

M. Kroll, D. Swanson, Chem. Phys. Lett. 9, 115 (1971).
[CrossRef]

Lorents, D. C.

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

Lum, R. M.

R. M. Lum, R. S. Hozack, J. Mol. Spectrosc. 58, 325 (1975).
[CrossRef]

Marowsky, G.

Murray, J. R.

J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
[CrossRef]

Palmer, B. A.

B. A. Palmer, R. A. Keller, R. Engleman, Los Alamos National Laboratory Report LA-8251-MS (1980).

Patterson, G. D.

G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
[CrossRef]

Pike, C. T.

C. T. Pike, Opt. Commun. 10, 14 (1974).
[CrossRef]

Schlossberg, H. R.

F. J. Wodarczyk, H. R. Schlossberg, J. Chem. Phys. 67, 4476 (1977).
[CrossRef]

Schroder, H. W.

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Shank, C. V.

M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
[CrossRef]

Simmons, J. D.

Stamatovic, A. S.

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Stein, L.

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Swanson, D.

M. Kroll, D. Swanson, Chem. Phys. Lett. 9, 115 (1971).
[CrossRef]

Swingle, J. C.

J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
[CrossRef]

Taylor, M. J.

Tellinghuisen, J.

J. Tellinghuisen, J. Quant. Spectrosc. Radiat. Transfer 19, 149 (1978).
[CrossRef]

J. Tellinghuisen, J. Chem. Phys. 58, 2821 (1973).
[CrossRef]

Tittel, F. K.

Trevor, P. L.

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

Troitskii, Yu. V.

Yu. V. Troitskii, V. P. Chebotaev, Opt. Spektrosk. 20, 362 (1966), Opt. Spectrosc. 20, 199 (1966).

Truesdell, K. A.

R. A. Keller, K. A. Truesdell, J. Chem. Phys. 75, 4271 (1981).
[CrossRef]

K. A. Truesdell, R. A. Keller, E. F. Zalewski, J. Chem. Phys. 73, 1117 (1980).
[CrossRef]

Turner, C. E.

J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
[CrossRef]

Welling, H.

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Wilson, W. L.

Wodarczyk, F. J.

F. J. Wodarczyk, H. R. Schlossberg, J. Chem. Phys. 67, 4476 (1977).
[CrossRef]

Yee, K. K.

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

Zalewski, E. F.

K. A. Truesdell, R. A. Keller, E. F. Zalewski, J. Chem. Phys. 73, 1117 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

H. W. Schroder, L. Stein, D. Frohlich, B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977).
[CrossRef]

Appl. Phys. Lett. (3)

S. F. Fulghum, I. P. Herman, M. S. Feld, A. Javan, Appl. Phys. Lett. 33, 926 (1978).
[CrossRef]

R. M. Hill, P. L. Trevor, P. L. Huestis, D. C. Lorents, Appl. Phys. Lett. 34, 137 (1979).
[CrossRef]

J. R. Murray, J. C. Swingle, C. E. Turner, Appl. Phys. Lett. 28, 530 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

M. Kroll, D. Swanson, Chem. Phys. Lett. 9, 115 (1971).
[CrossRef]

IEEE J. Quantum Electron. (3)

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

G. Marowsky, K. Kaufmann, IEEE J. Quantum Electron. QE-12, 207 (1976).
[CrossRef]

J. R. Fendley, IEEE J. Quantum Electron. 4, 627 (1968).
[CrossRef]

J. Appl. Phys. (2)

A. W. Johnson, J. B. Gerardo, J. Appl. Phys. 46, 4870 (1975).
[CrossRef]

J. B. Koffend, R. W. Field, J. Appl. Phys. 48, 4468 (1977).
[CrossRef]

J. Chem. Phys. (6)

K. B. Koffend, R. Bacis, R. W. Field, J. Chem. Phys. 70, 2366 (1979).
[CrossRef]

J. Tellinghuisen, J. Chem. Phys. 58, 2821 (1973).
[CrossRef]

K. A. Truesdell, R. A. Keller, E. F. Zalewski, J. Chem. Phys. 73, 1117 (1980).
[CrossRef]

R. A. Keller, K. A. Truesdell, J. Chem. Phys. 75, 4271 (1981).
[CrossRef]

F. J. Wodarczyk, H. R. Schlossberg, J. Chem. Phys. 67, 4476 (1977).
[CrossRef]

S. H. Dworetsky, R. S. Hozack, J. Chem. Phys. 59, 3856 (1973).
[CrossRef]

J. Mol. Spectrosc. (4)

R. M. Lum, R. S. Hozack, J. Mol. Spectrosc. 58, 325 (1975).
[CrossRef]

G. D. Patterson, S. H. Dworetsky, R. S. Hozack, J. Mol. Spectrosc. 55, 175 (1975).
[CrossRef]

J. A. Coxon, J. Mol. Spectrosc. 37, 39 (1971) and W. Holzer, W. F. Murphy, H. J. Bernstein, J. Chem. Phys. 52, 469 (1970).
[CrossRef]

R. F. Barrow, T. C. Clark, J. A. Coxon, K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Tellinghuisen, J. Quant. Spectrosc. Radiat. Transfer 19, 149 (1978).
[CrossRef]

Opt. Commun. (2)

M. B. Klein, C. V. Shank, A. Dienes, Opt. Commun. 7, 178 (1973).
[CrossRef]

C. T. Pike, Opt. Commun. 10, 14 (1974).
[CrossRef]

Opt. Spektrosk. (1)

Yu. V. Troitskii, V. P. Chebotaev, Opt. Spektrosk. 20, 362 (1966), Opt. Spectrosc. 20, 199 (1966).

Trans. Faraday Soc. (1)

M. A. A. Clyne, M. C. Heaven, Trans. Faraday Soc. 74, 1992 (1978).
[CrossRef]

Other (3)

Exciton Chemical Co. Catalog, P.O. Box 3204, Overlook Station, Dayton, Ohio 45431.

S. J. Harris, General Motors Corp., Seminar, Los Alamos National Laboratory, 1981.

B. A. Palmer, R. A. Keller, R. Engleman, Los Alamos National Laboratory Report LA-8251-MS (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Intercavity gain detection apparatus. For purposes of illustration, the Brewster windows of the sample cell and the plane of the components of the dye laser have been rotated 90° from their actual positions. See Appendix of Ref. 9 for the actual values of dA and dB used.

Fig. 2
Fig. 2

Simultaneous lock of the dye laser to three I2 fluorescence frequencies over a 13-nm range. P I 2 = 0.3 Torr, T ~ 300 K. (a) I2 fluorescence Ar+ pump laser tuned to the P(13), R(15), 43′ ← 0″, BX absorption, Ar+ ~ 0.2 W incident, (b) Dye laser with I2 inside the cavity, circulating power ~0.2 W. No Ar+ pump laser radiation present. (c) Dye laser (~0.2 W circulating) with Ar+ pump laser tuned as indicated in (a). (d) Measured rhodamine 560 gain curve.

Fig. 3
Fig. 3

Spatial hole burning assisted gain locking in I2. P I 2 0.3 Torr, T ~ 300 K, Ar+ pumped laser tuned to P(13), R(15), 43′ ← 0″, BX, absorption, Ar+ = 0.2 W incident, ~0.1 W absorbed. (a) Overexposed I2 fluorescence (43′ → υ″,υ″ = 10–15). (b) Dye laser (0.2 W circulating) tuned to 600 nm and partially locked to 43′ → 13″, I2 fluorescence. (c) Dye laser (0.1 W circulating) tuned to 600 nm and totally locked to 43′ → 13″ and 43′ → 15″ I2 fluorescence. (d) Dye laser (0.2 W circulating) tuned to 605 nm and simultaneously partially locked to 43′ → 13″, 14″, and 15″, I2 fluorescence. (e) Measured gain curve for Rh6G in ethylene glycol. Solid circles indicate where I2 fluorescence is relative to gain curve.

Fig. 4
Fig. 4

Dye laser locked to a gain of 2 × 10−5 in I2. P I 2 0.3 Torr, T ~ 300 K. Ar+ laser tuned to P(13), R(15), 43′ ← 0″, I2 absorption. (a) Overexposed I2 fluorescence (43′ → υ″,υ″ = 9–14). Ar+ ~ 0.2 W incident on sample. (b) Dye laser (circulating power ~0.2 W) partially locked to 43′ → 11″, I2 fluorescence. Ar+ ~ 2.5 mW incident on sample cell, ~0.2 mW absorbed by I2. G43′,11″ ~ 2 × 10−5. (c) Dye laser (circulating power ~0.2 W) with I2 sample inside cell. No Ar+ radiation present. (d) Same as (a).

Fig. 5
Fig. 5

Dye laser partially locked to 40′ → 6″, 81Br2 fluorescence. P Br 2 0.8 Torr, T ~ 300 K, iodine cell length—19 cm. (a) Dye laser (circulating power ~0.2 W) with 81Br2 sample inside the cavity, no Ar+ pump radiation. (b) Dye laser (circulating power ~0.2 W) partially locked to 40′ → 6″, 81Br2 fluorescence. Ar+ pump laser is tuned to the P(16), 40′ ← 0″ absorption. Ar+ ~ 0.2 W incident on Br2 sample cell. (c) 40′ → 6″, 81Br2 fluorescence. Ar+ laser tuned as in (b).

Fig. 6
Fig. 6

Dye laser partially locked to 81Br2, 40′ → 7″ fluorescence. P Br 2 0.8 Torr, T ~ 300 K. (a) Overexposed 81Br2, 40′ → 6″ = 6, 7, 8 fluorescence. Ar+ pump laser is tuned to the P(16) 40′ → 0″ absorption (~0.2 W incident on sample cell). (b) Dye laser (0.2 W circulating power) tuned to the blue side of the 40′–7″, 81Br2 fluorescence, 81Br2 sample present, Ar+ laser tuned as indicated in (a). (c) Dye laser tuned as in (b), 81Br2 sample present, no Ar+ radiation. (d) Dye laser (~0.2-W circulating power) tuned to the red side of the 40′ → 7″, 81Br2 fluorescence, 81Br2 sample present, Ar+ laser tuned as indicated in (a). (e) Dye laser tuned as in (d), 81Br2 sample present, no Ar+ radiation.

Tables (3)

Tables Icon

Table I Fractional Lock Is Proportional to the Amount of Pump Radiation Absorbeda

Tables Icon

Table II Dye Laser Assisted Bromine Laser Transitions

Tables Icon

Table III Calculated Gain and Associated Parameters for the I2 System

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp ( G υ , υ ) ,
G υ , υ = G υ , υ L υ , υ ,
G υ , υ = σ υ , υ Δ N υ , υ l σ υ , υ N υ * l ,
G 4 3 , i G 4 3 , j = ξ i ξ j | 4 3 | μ ( R ) | υ i | 2 | 4 3 | μ ( R ) | υ j | 2 ν 4 3 , υ i ν 4 3 , υ j l i l j × ( a i / V i a j / V j ) Δ ν 4 3 , υ j Δ ν 4 3 , υ i .
G 4 3 , i G 4 3 , j = ( G 4 3 , i G 4 3 , j L 4 3 , i G 4 3 , j ) ( 1 L 4 3 , j G 4 3 , j ) 1 .
L 4 3 , j = 0.97 G 4 3 , j for j = 8,10,12,14 = 0.4 G 4 3 , j for j = 7,9,11,13,15.
G 4 3 , 5 6 = 0.03 ± 0.01.
V 5 6 = 0.4 cm 3 V j = 0.04 cm 3 .

Metrics