Abstract

A new heartbeat phenomenon (HB2), produced when a laser beam travels vertically upward through a shallow pool of absorbing liquid, is described. The HB2 is compared with a previously reported similar heartbeat (HB1) obtained when a laser beam travels horizontally near and under the free surface of an absorbing liquid. The main difference between both phenomena is that the HB1 permits us to observe the transition to what we call 2-D optical turbulence, while the HB2 does not.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).
  2. M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).
  3. G. Da Costa, J. Calatroni, Appl. Opt. 18, 233 (1979).
    [CrossRef]
  4. D. D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976), Vols. 1 and 2.
  5. J. P. Gollub, S. V. Benson, J. Fluid Mech. 100, 449 (1980).
    [CrossRef]
  6. R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
    [CrossRef]
  7. M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
    [CrossRef]

1982 (2)

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).

1981 (2)

R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
[CrossRef]

M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
[CrossRef]

1980 (1)

J. P. Gollub, S. V. Benson, J. Fluid Mech. 100, 449 (1980).
[CrossRef]

1979 (1)

Anthore, R.

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

Benson, S. V.

J. P. Gollub, S. V. Benson, J. Fluid Mech. 100, 449 (1980).
[CrossRef]

Calatroni, J.

Carmichael, H. J.

R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
[CrossRef]

Da Costa, G.

Flament, P.

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

Gollub, J. P.

J. P. Gollub, S. V. Benson, J. Fluid Mech. 100, 449 (1980).
[CrossRef]

Gouesbet, G.

M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

Joseph, D. D.

D. D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976), Vols. 1 and 2.

Kitano, M.

M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
[CrossRef]

Ogawa, T.

M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
[CrossRef]

Rhazi, M.

M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

Schieve, W. C.

R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
[CrossRef]

Sharp, R. R.

R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
[CrossRef]

Weill, M. E.

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).

Yabuzaki, T.

M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
[CrossRef]

Appl. Opt. (1)

C. R. Acad. Sci. Ser. B (1)

M. E. Weill, M. Rhazi, G. GouesbetC. R. Acad. Sci. Ser. B 294, 567 (1982).

J. Fluid Mech. (1)

J. P. Gollub, S. V. Benson, J. Fluid Mech. 100, 449 (1980).
[CrossRef]

Opt. (1)

R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, Opt. 21, 2 (1982).

Opt. Commun. (1)

R. R. Sharp, H. J. Carmichael, W. C. Schieve, Opt. Commun. 40, 68 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).
[CrossRef]

Other (1)

D. D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup to produce heartbeat phenomenon two (HB2).

Fig. 2
Fig. 2

Spectrum of the HB2. Discrete spectrum corresponding to periodic oscillations of the HB2.

Fig. 3
Fig. 3

Another example of the HB2 discrete spectrum.

Fig. 4
Fig. 4

Fundamental frequencies of the HB2 spectra vs the laser power for different depths of pools.

Fig. 5
Fig. 5

The (hP) domain where the HB2 is observed.

Fig. 6
Fig. 6

Internal and external diameters of the heart vs the laser power for two different depths of pools.

Fig. 7
Fig. 7

Bifurcation diagram: amplitude of the perturbation vs the laser power P over the critical power Pc.

Fig. 8
Fig. 8

Experimental setup to produce heartbeat phenomenon one (HB1).

Fig. 9
Fig. 9

Frequencies in the HB1 spectra vs the laser power.

Fig. 10
Fig. 10

HB1 signals in the frequency and time domains (P = 0.42 W). The signal in the time domain is periodic.

Fig. 11
Fig. 11

Same as Fig. 10 except the laser power is now P = 0.56, and a bifurcation by period doubling has occurred.

Fig. 12
Fig. 12

Power is now P = 0.58 W. The spectrum exhibits chaotic character.

Fig. 13
Fig. 13

Power is P = 0.60 W. Return to a discrete spectrum although peak broadening is observed.

Fig. 14
Fig. 14

Turbulent signal both in the frequency and time domains (P = 0.64 W).

Fig. 15
Fig. 15

Turbulent signal both in the frequency and time domains (P = 0.66 W).

Metrics