Abstract

Extruded polycrystalline KRS-5 fiber exhibits a large amount of residual strain. This strain, which results from the large forces applied in the extrusion process, is a major contribution to the total attenuation. To study the effect of strain on fiber loss, we have measured the total attenuation coefficient αT and the attenuation coefficient due to scattering, αS, as a function of stress applied along the fiber axis. The applied stress σ induces a change in the refractive index, which in turn leads to bulk scattering and excess fiber loss. We have found that αTσ2, which is in accord with an extension of a recent theory by Harrington and Sparks.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
    [CrossRef]
  2. J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 10 (1981).
  3. D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
    [CrossRef]
  4. A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).
  5. T. J. Bridges, J. S. Hasiak, J. R. Strand, Opt. Lett. 5, 85 (1980).
    [CrossRef]
  6. Y. Mimura, C. Ota, Appl. Phys. Lett. 40, 773 (1982).
    [CrossRef]
  7. Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
    [CrossRef]
  8. J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 227, 133 (1980).
  9. A. L. Gentile et al., “Infrared Fiber Optical Materials,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), pp. 105–118.
    [CrossRef]
  10. M. Sparks, L. G. DeShazer, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 3 (1981).
  11. J. A. Harrington, M. Sparks, Opt. Lett. 8, 223 (1983).
    [CrossRef] [PubMed]
  12. M. Sparks, Opt J. Soc. Am. in press.
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1982).
  14. J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1967).
  15. K. H. Hellwege, A. M. Hellwege, Eds., Landolt-Börnstein Numerical Data, Vol. 11 (Springer, Berlin, 1979).
  16. A. R. Tynes, A. D. Pearson, D. L. Bisbee, J. Opt. Soc. Am. 61, 143 (1971).
    [CrossRef]

1983 (1)

1982 (2)

Y. Mimura, C. Ota, Appl. Phys. Lett. 40, 773 (1982).
[CrossRef]

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

1981 (3)

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 10 (1981).

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

M. Sparks, L. G. DeShazer, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 3 (1981).

1980 (2)

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 227, 133 (1980).

T. J. Bridges, J. S. Hasiak, J. R. Strand, Opt. Lett. 5, 85 (1980).
[CrossRef]

1978 (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

1971 (1)

Arieli, R.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Bernal G., E.

D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
[CrossRef]

Bisbee, D. L.

Bridges, T. J.

Butter, C.

D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
[CrossRef]

Chen, D.

D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
[CrossRef]

DeShazer, L. G.

M. Sparks, L. G. DeShazer, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 3 (1981).

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

A. L. Gentile et al., “Infrared Fiber Optical Materials,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), pp. 105–118.
[CrossRef]

Harrington, J. A.

J. A. Harrington, M. Sparks, Opt. Lett. 8, 223 (1983).
[CrossRef] [PubMed]

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 10 (1981).

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 227, 133 (1980).

Hasiak, J. S.

Holbrock, L. M.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Kapon, E.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Katzir, A.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Komazawa, Y.

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

Mimura, Y.

Y. Mimura, C. Ota, Appl. Phys. Lett. 40, 773 (1982).
[CrossRef]

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1967).

Okamura, Y.

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

Ota, C.

Y. Mimura, C. Ota, Appl. Phys. Lett. 40, 773 (1982).
[CrossRef]

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

Pearson, A. D.

Pinnow, D. A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Salzman, J.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Schoenberg, A.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Simhony, S.

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

Sklogman, R.

D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
[CrossRef]

Sparks, M.

J. A. Harrington, M. Sparks, Opt. Lett. 8, 223 (1983).
[CrossRef] [PubMed]

M. Sparks, L. G. DeShazer, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 3 (1981).

M. Sparks, Opt J. Soc. Am. in press.

Standlee, A. G.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Strand, J. R.

Tynes, A. R.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1982).

Appl. Phys. Lett. (2)

Y. Mimura, C. Ota, Appl. Phys. Lett. 40, 773 (1982).
[CrossRef]

D. A. Pinnow, A. L. Gentile, A. G. Standlee, L. M. Holbrock, Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

Y. Mimura, Y. Okamura, Y. Komazawa, C. Ota, Jpn. J. Appl. Phys. 20, L17 (1981).
[CrossRef]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 10 (1981).

A. Katzir, S. Simhony, R. Arieli, J. Salzman, A. Schoenberg, E. Kapon, Proc. Soc. Photo-Opt. Instrum. Eng. 320, 136 (1982).

J. A. Harrington, Proc. Soc. Photo-Opt. Instrum. Eng. 227, 133 (1980).

M. Sparks, L. G. DeShazer, Proc. Soc. Photo-Opt. Instrum. Eng. 266, 3 (1981).

Other (6)

M. Sparks, Opt J. Soc. Am. in press.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1982).

J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1967).

K. H. Hellwege, A. M. Hellwege, Eds., Landolt-Börnstein Numerical Data, Vol. 11 (Springer, Berlin, 1979).

A. L. Gentile et al., “Infrared Fiber Optical Materials,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), pp. 105–118.
[CrossRef]

D. Chen, R. Sklogman, E. Bernal G., C. Butter, “Fabrication of Silver Halide Fibers by Extrusion,” in Fiber Optics: Advances in Research and Development, B. Bendow, S. S. Mitra, Eds. (Plenum, New York, 1979), p. 119.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

CO2 insertion loss apparatus for measuring both αT and αS of KRS-5 fibers. Reflected beam from input end of fiber is blocked from entering laser for accurate determination of transmission.

Fig. 2
Fig. 2

Differential scattering losses for two different KRS-5 fibers. The hot spot in (A) is a point of high scattering loss. (B) is a fiber with less scattering loss and no hot spots.

Fig. 3
Fig. 3

Attenuation coefficient due to scattering for data in Fig. 2(B). Note effect of end polish on scattered light.

Fig. 4
Fig. 4

Percentage of scattering loss at 10.6 μm.

Fig. 5
Fig. 5

Attenuation at 10.6 μm in KRS-5 fiber with different grain size.

Fig. 6
Fig. 6

Mechanical strength of KRS-5 fiber. Note the large plastic region for this material.

Fig. 7
Fig. 7

Attenuation in KRS-5 fiber under applied tensile load.

Fig. 8
Fig. 8

Excess loss in KRS-5 fiber at 10.6 μm, while the fiber is under a constant tensile load. Excess loss is obtained by subtracting attenuation at zero load from the attenuation under load.

Tables (1)

Tables Icon

Table I IR Fiber Losses at 10.6 μm for Polycrystalline (PC), Single-Crystal (SC), and Glass Fibers a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α T ( λ ) = α S ( λ ) + α A ( λ ) = A λ 4 + B + C + λ 2 + α A ( λ ) ,
k l opd 1 and k l tr 1 ,
Δ n = q σ ,
| Δ n 3 | = 1 / 2 ( n ) 3 P 12 ,
Q = 2 ( Δ n ) 2 ( k a ) 2 .
α T = N Q ( π a 2 ) ,
α T ( Δ n ) 2 ( σ ) 2 .
I tot I 0 exp ( α T x ) ,
d I S = I ( x ) α S d x = [ I 0 exp ( α T x ) ] α S d x .
α S = d I I 0 exp ( α T x ) d x .
α T = 9.3 × 10 7 σ 2.0 , α S = 5.2 × 10 7 σ 2.6 ,

Metrics