Abstract

The process of laser fire polishing of optical glasses is shown to work very well for materials with small coefficients of thermal expansion. The surfaces of other glasses crack during laser fire polishing or during cool down from an elevated preheat temperature. An analytical model is described and is used to show that, in materials which cannot be laser fire-polished, the thermal-gradient stress resulting from differential expansion exceeds the yield stress. Successful laser fire polishing of fused quartz and Pyrex glasses is reported.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Temple, M. J. Soileau, “1.06-μm Laser Induced Breakdown of CO2-Laser-Polished Fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ.620 (1980), p. 180.
  2. P. A. Temple, W. H. Lowdermilk, D. Milam, Appl. Opt. 21, 3249 (1982).
    [CrossRef] [PubMed]
  3. M. Bass, “Laser Heating of Solids,” in Proceedings, 1980 NATO Summer School on Physical Processes in Laser Materials Interactions, Villa Le Pianore, Italy (Plenum, New York, 1983); to be published.
  4. H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977).
    [CrossRef]
  5. B. A. Boley, J. H. Weiner, Theory of Thermal Stress (Wiley, New York, 1960).
  6. A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, 163 (1920).
  7. W. Weibull, Ingenioers vetenskapsakad Handl. 151, 45 (1939);Ceram Abstr. 19, 78 (1940).
  8. F. M. Ernsberger, “Strength Controlling Structures in Glass,” in Research into Glass (Pittsburgh Plate Glass Co., Pittsburgh, Pa., 1967).
  9. M. Bartenev, The Structure and Mechanical Properties of Inorganic Glass (Wolters-Noordfoff, Groningen, The Netherlands, 1970).
  10. S. S. Manson, Thermal Stress and Low-Cycle Fatigue (McGraw-Hill, New York, 1966).
  11. Optical Glass Catalog (Schott Optical Glass, Inc., Duryea, Pa. 18642).
  12. J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976).

1982 (1)

1977 (1)

H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977).
[CrossRef]

1939 (1)

W. Weibull, Ingenioers vetenskapsakad Handl. 151, 45 (1939);Ceram Abstr. 19, 78 (1940).

1920 (1)

A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, 163 (1920).

Angell, C. A.

J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976).

Anthony, T. R.

H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977).
[CrossRef]

Bartenev, M.

M. Bartenev, The Structure and Mechanical Properties of Inorganic Glass (Wolters-Noordfoff, Groningen, The Netherlands, 1970).

Bass, M.

M. Bass, “Laser Heating of Solids,” in Proceedings, 1980 NATO Summer School on Physical Processes in Laser Materials Interactions, Villa Le Pianore, Italy (Plenum, New York, 1983); to be published.

Boley, B. A.

B. A. Boley, J. H. Weiner, Theory of Thermal Stress (Wiley, New York, 1960).

Cline, H. E.

H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977).
[CrossRef]

Ernsberger, F. M.

F. M. Ernsberger, “Strength Controlling Structures in Glass,” in Research into Glass (Pittsburgh Plate Glass Co., Pittsburgh, Pa., 1967).

Griffith, A. A.

A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, 163 (1920).

Lowdermilk, W. H.

Manson, S. S.

S. S. Manson, Thermal Stress and Low-Cycle Fatigue (McGraw-Hill, New York, 1966).

Milam, D.

Soileau, M. J.

P. A. Temple, M. J. Soileau, “1.06-μm Laser Induced Breakdown of CO2-Laser-Polished Fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ.620 (1980), p. 180.

Temple, P. A.

P. A. Temple, W. H. Lowdermilk, D. Milam, Appl. Opt. 21, 3249 (1982).
[CrossRef] [PubMed]

P. A. Temple, M. J. Soileau, “1.06-μm Laser Induced Breakdown of CO2-Laser-Polished Fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ.620 (1980), p. 180.

Weibull, W.

W. Weibull, Ingenioers vetenskapsakad Handl. 151, 45 (1939);Ceram Abstr. 19, 78 (1940).

Weiner, J. H.

B. A. Boley, J. H. Weiner, Theory of Thermal Stress (Wiley, New York, 1960).

Wong, J.

J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976).

Appl. Opt. (1)

Ingenioers vetenskapsakad Handl. (1)

W. Weibull, Ingenioers vetenskapsakad Handl. 151, 45 (1939);Ceram Abstr. 19, 78 (1940).

J. Appl. Phys. (1)

H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A (1)

A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, 163 (1920).

Other (8)

M. Bass, “Laser Heating of Solids,” in Proceedings, 1980 NATO Summer School on Physical Processes in Laser Materials Interactions, Villa Le Pianore, Italy (Plenum, New York, 1983); to be published.

B. A. Boley, J. H. Weiner, Theory of Thermal Stress (Wiley, New York, 1960).

F. M. Ernsberger, “Strength Controlling Structures in Glass,” in Research into Glass (Pittsburgh Plate Glass Co., Pittsburgh, Pa., 1967).

M. Bartenev, The Structure and Mechanical Properties of Inorganic Glass (Wolters-Noordfoff, Groningen, The Netherlands, 1970).

S. S. Manson, Thermal Stress and Low-Cycle Fatigue (McGraw-Hill, New York, 1966).

Optical Glass Catalog (Schott Optical Glass, Inc., Duryea, Pa. 18642).

J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976).

P. A. Temple, M. J. Soileau, “1.06-μm Laser Induced Breakdown of CO2-Laser-Polished Fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ.620 (1980), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the experiment.

Fig. 2
Fig. 2

Surfaces of (a) Zerodur and (b) BK-7 after unsuccessful attempts to laser fire-polish the surfaces. The diameter of each sample is 2.54 cm. In all cases, the samples were preheated to 350°C and irradiated with an 11-m 250-W CO2 laser beam. The scan speeds from left to right in each photo were 3.9, 3.3, and 2.6 cm/sec. The melted layer spalled off the substrate in the middle and right-hand trails for each glass.

Fig. 3
Fig. 3

Surface of Pyrex glass (a) when scratched with 600-grit, and (b) the same site after laser fire polishing.

Fig. 4
Fig. 4

Profilometer traces of the area shown in Fig. 3.

Fig. 5
Fig. 5

Stresses as a function of depth of Pyrex glass calculated using Eqs. (1) and (2) at t = tdw for laser fire polishing a sample preheated to 350°C, irradiated with 210 W at 10.6 μm in a Gaussian mode with 1/e2 intensity width of 1.1 cm, and scanned at 2.6 cm/sec. –· –·– = stress due to first term in Eq. (2); - - - = stress due to second term in Eq. (2); – – = stress due to third term in Eq. (2); and — = total stress.

Tables (1)

Tables Icon

Table I Experimental Conditions and Calculated Stresses for Laser Fire-Polished Glasses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( z , t ) = 2 β I 0 K ( κ t ) 1 / 2 i erfc [ z / 2 ( κ t ) 1 / 2 ] .
σ x x ( z , t ) = σ y y ( z , t ) = σ ( z , t ) ,
σ ( z , t ) = α E 1 ν [ Δ T ( z , t ) + N T b + 12 ( b / 2 z ) b 3 M T ] , N T = 0 b Δ T ( z , t ) d z , M T = 0 b ( b / 2 z ) T ( z , t ) d z .

Metrics