Abstract

An ultraviolet spectrometer of Pepsios design has been constructed and used for measurements of the vertical column abundance of atmospheric hydroxyl. Ground-based observations are made of the spectroscopic absorption of sunlight by OH at 3081.7 Å. The measurements are of relevance to the problem of stratospheric ozone. The spectrometer is a series arrangement of four pressure-scanned Fabry-Perot etalons with vernier spacer ratios. The spectral resolution of 0.06 cm−1 permits the identification and measurements of the sharp absorption feature from cool terrestrial OH against the solar background. The observations from Fritz Peak Observatory, Colo., are presently contributing to a new data base on this atmospheric trace constituent which should be of importance in the understanding of middle atmospheric photochemical processes.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).
  2. C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
    [CrossRef]
  3. M. Partomah, F. L. Roesler, J. Geophys. Res. 82, 2607 (1977).
    [CrossRef]
  4. I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
    [CrossRef]
  5. C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
    [CrossRef]
  6. F. E. Barmore, J. Atmos. Sci. 32, 1489 (1975).
    [CrossRef]
  7. L. M. Hobbs, Astrophys. J. 142, 160 (1965).
    [CrossRef]
  8. M. Daehler, Astrophys. J. 150, 667 (1967).
    [CrossRef]
  9. N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
    [CrossRef]
  10. N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
    [CrossRef]
  11. W. Traub, F. L. Roesler, Astrophys. J. 163, 629 (1971).
    [CrossRef]
  12. J. T. Trauger, F. L. Roesler, Appl. Opt. 11, 1964 (1972).
    [CrossRef] [PubMed]
  13. N. P. Carleton, W. A. Traub, Science 177, 988 (1972).
    [CrossRef] [PubMed]
  14. J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
    [CrossRef]
  15. J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
    [CrossRef]
  16. J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
    [CrossRef]
  17. P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954).
    [CrossRef]
  18. C. R. Burnett, E. B. Burnett, J. Geophys. Res. 86, 5185 (1981).
    [CrossRef]
  19. C. R. Burnett, E. B. Burnett, Geophys. Res. Lett. 9, 708 (1982).
    [CrossRef]
  20. J. G. Anderson, J. Geophys. Res. 76, 7820 (1971).
    [CrossRef]
  21. J. G. Anderson, Geophys. Res. Lett. 3, 165 (1976).
    [CrossRef]
  22. W. S. Heaps, T. J. McGee, R. D. Hudson, L. O. Caudill, Appl. Opt. 21, 2265 (1982).
    [CrossRef] [PubMed]
  23. C. R. Burnett, W. E. Lammer, Appl. Opt. 8, 2345 (1969).
    [CrossRef] [PubMed]
  24. G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
    [CrossRef]
  25. J. Brault, L. Testerman, Preliminary Kitt Peak Photoelectric Atlas (Kitt Peak National Observatory, 1972).

1982 (2)

1981 (1)

C. R. Burnett, E. B. Burnett, J. Geophys. Res. 86, 5185 (1981).
[CrossRef]

1980 (2)

I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
[CrossRef]

J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
[CrossRef]

1978 (1)

J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
[CrossRef]

1977 (1)

M. Partomah, F. L. Roesler, J. Geophys. Res. 82, 2607 (1977).
[CrossRef]

1976 (1)

J. G. Anderson, Geophys. Res. Lett. 3, 165 (1976).
[CrossRef]

1975 (2)

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

F. E. Barmore, J. Atmos. Sci. 32, 1489 (1975).
[CrossRef]

1973 (1)

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

1972 (3)

J. T. Trauger, F. L. Roesler, Appl. Opt. 11, 1964 (1972).
[CrossRef] [PubMed]

N. P. Carleton, W. A. Traub, Science 177, 988 (1972).
[CrossRef] [PubMed]

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

1971 (2)

W. Traub, F. L. Roesler, Astrophys. J. 163, 629 (1971).
[CrossRef]

J. G. Anderson, J. Geophys. Res. 76, 7820 (1971).
[CrossRef]

1969 (2)

C. R. Burnett, W. E. Lammer, Appl. Opt. 8, 2345 (1969).
[CrossRef] [PubMed]

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

1968 (1)

N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
[CrossRef]

1967 (1)

M. Daehler, Astrophys. J. 150, 667 (1967).
[CrossRef]

1965 (1)

L. M. Hobbs, Astrophys. J. 142, 160 (1965).
[CrossRef]

1963 (1)

1962 (1)

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

1954 (1)

Anderson, J. G.

J. G. Anderson, Geophys. Res. Lett. 3, 165 (1976).
[CrossRef]

J. G. Anderson, J. Geophys. Res. 76, 7820 (1971).
[CrossRef]

Barmore, F. E.

F. E. Barmore, J. Atmos. Sci. 32, 1489 (1975).
[CrossRef]

Brault, J.

J. Brault, L. Testerman, Preliminary Kitt Peak Photoelectric Atlas (Kitt Peak National Observatory, 1972).

Burnett, C. R.

C. R. Burnett, E. B. Burnett, Geophys. Res. Lett. 9, 708 (1982).
[CrossRef]

C. R. Burnett, E. B. Burnett, J. Geophys. Res. 86, 5185 (1981).
[CrossRef]

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

C. R. Burnett, W. E. Lammer, Appl. Opt. 8, 2345 (1969).
[CrossRef] [PubMed]

Burnett, E. B.

C. R. Burnett, E. B. Burnett, Geophys. Res. Lett. 9, 708 (1982).
[CrossRef]

C. R. Burnett, E. B. Burnett, J. Geophys. Res. 86, 5185 (1981).
[CrossRef]

Carleton, N. P.

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

N. P. Carleton, W. A. Traub, Science 177, 988 (1972).
[CrossRef] [PubMed]

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
[CrossRef]

Caudill, L. O.

Chabbal, R.

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Daehler, M.

M. Daehler, Astrophys. J. 150, 667 (1967).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Goody, R. M.

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

Heaps, W. S.

Hobbs, L. M.

L. M. Hobbs, Astrophys. J. 142, 160 (1965).
[CrossRef]

Hudson, R. D.

Jacquinot, P.

Kiziloglu, N.

I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
[CrossRef]

Lammer, W. E.

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

C. R. Burnett, W. E. Lammer, Appl. Opt. 8, 2345 (1969).
[CrossRef] [PubMed]

Larson, L. E.

J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
[CrossRef]

Lasher, R. W.

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

Liller, W.

N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
[CrossRef]

Liller, W. L.

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

Mack, J. E.

McGee, T. J.

McNutt, D. P.

Mickelson, M. E.

J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
[CrossRef]

Miskin, A. S.

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

Münch, G.

J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
[CrossRef]

Novak, W. T.

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

Ogelman, H.

I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
[CrossRef]

Partomah, M.

M. Partomah, F. L. Roesler, J. Geophys. Res. 82, 2607 (1977).
[CrossRef]

Roesler, F. L.

J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
[CrossRef]

M. Partomah, F. L. Roesler, J. Geophys. Res. 82, 2607 (1977).
[CrossRef]

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

J. T. Trauger, F. L. Roesler, Appl. Opt. 11, 1964 (1972).
[CrossRef] [PubMed]

W. Traub, F. L. Roesler, Astrophys. J. 163, 629 (1971).
[CrossRef]

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
[CrossRef]

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

Sharma, A.

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

Sides, V. L.

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

Testerman, L.

J. Brault, L. Testerman, Preliminary Kitt Peak Photoelectric Atlas (Kitt Peak National Observatory, 1972).

Traub, W.

W. Traub, F. L. Roesler, Astrophys. J. 163, 629 (1971).
[CrossRef]

Traub, W. A.

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

N. P. Carleton, W. A. Traub, Science 177, 988 (1972).
[CrossRef] [PubMed]

Trauger, J. T.

J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
[CrossRef]

J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
[CrossRef]

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

J. T. Trauger, F. L. Roesler, Appl. Opt. 11, 1964 (1972).
[CrossRef] [PubMed]

Yegingill, I.

I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
[CrossRef]

Appl. Opt. (4)

Astrophys. J. (8)

J. T. Trauger, F. L. Roesler, N. P. Carleton, W. A. Traub, Astrophys. J. 184, L137 (1973).
[CrossRef]

J. T. Trauger, M. E. Mickelson, L. E. Larson, Astrophys. J. 225, L157 (1978).
[CrossRef]

J. T. Trauger, G. Münch, F. L. Roesler, Astrophys. J. 236, 1035 (1980).
[CrossRef]

L. M. Hobbs, Astrophys. J. 142, 160 (1965).
[CrossRef]

M. Daehler, Astrophys. J. 150, 667 (1967).
[CrossRef]

N. P. Carleton, W. Liller, F. L. Roesler, Astrophys. J. 154, 385 (1968).
[CrossRef]

N. P. Carleton, A. Sharma, R. M. Goody, W. L. Liller, F. L. Roesler, Astrophys. J. 155, 323 (1969).
[CrossRef]

W. Traub, F. L. Roesler, Astrophys. J. 163, 629 (1971).
[CrossRef]

Geophys. Res. Lett. (2)

C. R. Burnett, E. B. Burnett, Geophys. Res. Lett. 9, 708 (1982).
[CrossRef]

J. G. Anderson, Geophys. Res. Lett. 3, 165 (1976).
[CrossRef]

J. Atmos. Sci. (1)

F. E. Barmore, J. Atmos. Sci. 32, 1489 (1975).
[CrossRef]

J. Geophys. Res. (6)

C. R. Burnett, E. B. Burnett, J. Geophys. Res. 86, 5185 (1981).
[CrossRef]

C. R. Burnett, W. E. Lammer, W. T. Novak, V. L. Sides, J. Geophys. Res. 77, 2934 (1972).
[CrossRef]

M. Partomah, F. L. Roesler, J. Geophys. Res. 82, 2607 (1977).
[CrossRef]

I. Yegingill, H. Ogelman, N. Kiziloglu, J. Geophys. Res. 85, 5507 (1980).
[CrossRef]

C. R. Burnett, R. W. Lasher, A. S. Miskin, V. L. Sides, J. Geophys. Res. 80, 1837 (1975).
[CrossRef]

J. G. Anderson, J. Geophys. Res. 76, 7820 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Science (1)

N. P. Carleton, W. A. Traub, Science 177, 988 (1972).
[CrossRef] [PubMed]

Other (1)

J. Brault, L. Testerman, Preliminary Kitt Peak Photoelectric Atlas (Kitt Peak National Observatory, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pepsios optical system. Sunlight is reflected from the roof-mounted heliostat to the predispersing grating G1 which selects a spectral width of 25 Å centered at 3081 Å. Etalon E1 is tuned to the selected OH line with a fixed passband of 0.5 Å. Etalons E2, E3, and E4 are pressure scanned and have a theoretical resolution of ∼0.02 cm−1. Grating G2 gives additional discrimination against the scattered visible and near-ultraviolet sunlight. The axial signal at photomultiplier PM2 is normalized by a reference signal at PM1 which monitors the time variation in the ultraviolet band transmitted by G1 and E1. The spectrometer is adjusted and calibrated for the P1(1) line position with the hollow cathode emission source using the removable mirror Mr.

Fig. 2
Fig. 2

Transmission bands for the UV Pepsios. (a) The 25-Å (260-cm−1) passband for the double monochromator grating system G is shown schematically with the passbands of the etalons E1 and E2. Etalon E1 has a fixed passband of 0.5 Å (5.3 cm−1) and free spectral range Q = 30 Å (320 cm−1); mica spacer t = 0.0016 cm. (b) The theoretical transmission peaks for E1, E2, E3, and E4 are Airy functions with R = 0.95. Etalons E2, E3, and E4 have Invar spacers with t = 0.0711, 0.3042, and 0.3438 cm, respectively, with free spectral ranges as shown. The system is mechanically adjusted for peak transmission at σ0σ = 0), and the vernier design for the spacer ratios precludes overlapping orders of interference within the passband of the grating system.

Fig. 3
Fig. 3

OH energy levels. The low lying rotational levels of the 2Π and 2Σ υ = 0 states are shown.24 (All 2Π levels are λ doubled on a scale too small to be shown here.) Transitions under study are neighboring lines found to be convenient for observation and analysis. For stratospheric conditions, the fractional populations for the absorbing levels are 0.12 and 0.07 for the P1(1) and Q1(3) lines, respectively. The corresponding oscillator strengths are 6.15 × 10−4 and 8.15 × 10−4.18

Fig. 4
Fig. 4

Parasitic light determination. The solar absorption spectrum and laboratory OH emission spectrum obtained with the Pepsios are shown for the spectral region of the P1(1)–Q1(3) electronic-rotation resonance lines of hydroxyl. Circled data points are taken from the Kitt Peak Preliminary Solar Atlas.25 The parasitic light represented by the function P(σ) = P0 + P1(σσ0) + P2(σσ0)2 is adjusted until the ratio of the Pepsios intensities to the Kitt Peak intensities at the circled points approaches a constant value.18

Fig. 5
Fig. 5

Terrestrial OH absorption at the P1(1) line. A single 3-min Pepsios scan at solar zenith angle of 32° shows the sharp terrestrial absorption feature at precisely the position expected from the laboratory emission source. The solar background is computer-fitted, utilizing the information for the terrestrial absorption region that the observed slope at the terrestrial line center is entirely due to the solar background.18 The OH column abundance, Nυ (cm−2), is proportional to the fractional absorption, given by the area under the terrestrial absorption profile divided by the incident solar intensity.

Fig. 6
Fig. 6

Terrestrial absorption at the Q1(3) line. Superposition of, six consecutive scans for a half-hour average is shown. Here, S denotes the center of the solar Q1(3) line which is shifted −0.042 cm−1 from the terrestrial line, consistent with the gravitational and Doppler shift for the date and local time. The sharp curvature of the solar background poses an additional complication in the analysis of this line. Fortunately, the bottom of the solar Q1(3) line is found to be essentially Gaussian. We have used the theoretical solar–terrestrial line shift and the slope method described earlier for the P1(1) line18 to fit the solar profile. The residual terrestrial absorption yields well-behaved abundance values and the results are excellent confirmation of the identity of the terrestrial absorber.

Fig. 7
Fig. 7

Noise suppression by signal normalization and repetitive scanning. (a) Solar ultraviolet reference signal with cirrostratus clouds, ten scans. (b) Solar profile with P1(1) terrestrial absorption obtained in conditions of (a): normalized high-resolution signal with superposition of scans.

Fig. 8
Fig. 8

Average diurnal variation of OH vertical column abundance. The average OH vertical column abundances at Fritz Peak Observatory, Colo., for 1981–82 are plotted against sec X, where X is the solar zenith angle. This general dependence is due to the role of the slant path factor, sec X, in controlling the solar ultraviolet intensity which initiates the photochemical production of OH. The error bars are the standard error of the mean, σ/√N. Each point is the average of about fifty 15-min data sets.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A = T 2 ( 1 R ) 2 [ 1 4 R ( 1 R ) 2 sin 2 δ / 2 ] 1 ,
δ / 2 = 2 π n t σ cos θ + ϕ .
Q = 1 2 n t cos θ 1 2 n t
δ ½ σ = 1 2 n t 1 R π R .
Δ σ = ( β 2 / 8 ) σ .
n 2 1 n 2 + 2 ρ .
d σ σ = d n n
Δ σ σ = 2.13 × 10 6 1.65 × 10 6 sin θ 1.51 × 10 6 cos ϕ sin H cos δ ,

Metrics