Abstract

The spectral evolution and transitional behavior of the odd harmonic windows in a broadly tuned electrooptic Solc filter are described theoretically and demonstrated experimentally. We show how the fundamental and all the odd harmonic passbands split and eventually merge in pairs with nearest neighbors to become even harmonics of the fundamental λf as the principal pass wavelength λp is tuned from λp = λf to λp ≫λf.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Solc, J. Opt. Soc. Am. 55, 621 (1965).
    [CrossRef]
  2. D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
    [CrossRef]
  3. J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
    [CrossRef]
  4. J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
    [CrossRef]
  5. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  6. J. W. Evans, J. Opt. Soc. Am. 48, 142 (1958).
    [CrossRef]
  7. I. P. Kaminow, An Introduction to Electro-Optic Devices (Academic, New York, 1974), Chap. 2.

1982 (1)

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
[CrossRef]

1981 (1)

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
[CrossRef]

1979 (1)

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

1965 (1)

1958 (1)

1941 (1)

Abrams, R. L.

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Evans, J. W.

Henderson, D. M.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
[CrossRef]

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
[CrossRef]

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Jones, R. C.

Kaminow, I. P.

I. P. Kaminow, An Introduction to Electro-Optic Devices (Academic, New York, 1974), Chap. 2.

Lotspeich, J. F.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
[CrossRef]

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
[CrossRef]

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Plant, T. K.

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Solc, I.

Stephens, R. R.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
[CrossRef]

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
[CrossRef]

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Walker, C. M.

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, Appl. Phys. Lett. 34, 391 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, IEEE J. Quantum Electron. QE-18, 1253 (1982).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Eng. (1)

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
[CrossRef]

Other (1)

I. P. Kaminow, An Introduction to Electro-Optic Devices (Academic, New York, 1974), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Stepwise sampled sine wave distribution representing the optic axis tilt angles in a tunable Solc filter.

Fig. 2
Fig. 2

Variation of the short-wavelength windows λ p with principal pass wavelength λp normalized to the fundamental pass wavelength λf.

Fig. 3
Fig. 3

Fourier amplitudes of the harmonic windows vs principal pass wavelength. ϕ(k′) is the wavelength variable portion of Eq. (6) evaluated at λ = λ p ; k 2 π / λ p .

Fig. 4
Fig. 4

Computer simulation of the spectral transfer characteristic of the ten-plate Solc filter with λp = λf.

Fig. 5
Fig. 5

Computer simulation of the spectral transfer characteristics of the ten-plate Solc filter tuned for various pass wavelengths λp > λf.

Fig. 6
Fig. 6

Experimental and theoretical transmission of the ten-plate AgGaS2 tunable Solc filter resulting from tuning past a fixed 10.6-μm input. The short-wavelength image window was used. λf= 13.7 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f ( y ) = cos ( n π Λ f / Λ p ) ; [ ( 2 n 1 ) / 4 ] Λ f y [ ( 2 n + 1 ) / 4 ] / Λ f ,
L = ( N + 1 / 2 ) Λ f ,
P = 2 N + 1 .
f ( y ) = F ( K ) cos KydK ; K = 2 π / Λ ,
F ( K ) = 1 2 π L / 2 L / 2 f ( y ) cos Kydy .
F ( K ) = ( L 2 π ) sin ( π Λ f / 2 Λ ) 2 ( π Λ f / 2 Λ ) [ sin P ( π / 2 ) ( Λ f / Λ + Λ f / Λ p ) P sin ( π / 2 ) ( Λ f / Λ + Λ f / Λ p ) + sin P ( π / 2 ) ( Λ f / Λ Λ f / Λ p ) P sin ( π / 2 ) ( Λ f / Λ Λ f / Λ p ) ] .
Λ f Λ p = 2 M ± Λ f Λ p Λ p Λ f = Λ p / Λ f 2 M Λ p / Λ f ± 1 ,
tan 2 α = 2 r ijk E k / ( n o 2 n e 2 ) ,
r 41 ( = r 231 ) = 3.5 ± 0.5 × 10 12 m / V ,

Metrics