Abstract

Third-harmonic-generation experiments at the Lawrence Livermore National Laboratory were recently reported by Linford et al. [ Appl. Opt. 21, 3633 ( 1982)]. Here the theory pertaining to these experiments is discussed in detail. The Livermore results are shown to be in accordance with calculations using the harmonic-generation code mixer, whose predictions of highly efficient frequency tripling were first confirmed experimentally at the University of Rochester using the Type II/Type II polarization-mismatch configuration. The Livermore experiments confirm the advantages of this configuration.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
    [CrossRef]
  2. R. S. Craxton, Opt. Commun. 34, 474 (1980).
    [CrossRef]
  3. M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).
  4. G. J. Linford et al., Appl. Opt. 21, 3633 (1982).
    [CrossRef] [PubMed]
  5. R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
    [CrossRef]
  6. G. J. Linford et al., Appl. Opt. 22, 1957 (1983).
    [CrossRef] [PubMed]
  7. W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
    [CrossRef]
  8. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  9. R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
    [CrossRef]

1983 (1)

1982 (1)

1981 (3)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

1980 (2)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boni, R.

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

Craxton, R. S.

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eimerl, D.

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Jacobs, S. D.

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

Johnson, B. C.

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Linford, G. J.

Lund, L. D.

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Rienecker, F.

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Rizzo, J. E.

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

Seka, W.

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

Seppala, L. G.

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Soures, J. M.

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

Summers, M. A.

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

R. S. Craxton, S. D. Jacobs, J. E. Rizzo, R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981).
[CrossRef]

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

W. Seka, J. M. Soures, S. D. Jacobs, L. D. Lund, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1689 (1981).
[CrossRef]

Opt. Commun. (2)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980).
[CrossRef]

R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (1)

M. A. Summers, L. G. Seppala, F. Rienecker, D. Eimerl, B. C. Johnson, in Engineering Design of the Nova Laser Facility for Inertial Confinement Fusion, W. W. Simmons et al., Eds., Report CONF-811040 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Idealized polarization-mismatch tripling configuration. When the polarization angle θp is 35°, two ordinary photons are input to the doubler for every extraordinary photon, providing a 1:1, 2ω:ω, photon mix to the tripler.

Fig. 2
Fig. 2

Calculated sensitivity of tripling efficiency to doubler tilt for Livermore crystal combinations AC (see Table I) and a doubler input intensity of 2.6 GW/cm2. In case C, the polarization-mismatch configuration is used with θp = 35°.

Fig. 3
Fig. 3

Comparison of mixer calculations with Livermore experiments for the mix dependence of tripling efficiency for Type I/Type II tripling. For the calculations the doubler input intensity is taken to be 2.6 GW/cm2. Solid line and solid data points: case A (22.9-mm thick doubler). Dashed line and open data points: case B (13.4-mm thick doubler).

Fig. 4
Fig. 4

mixer calculations of tripling efficiency for Livermore Type II crystals. The polarization-mismatch configuration is used with θp = 35°, and both crystals are set at phase-matching.

Tables (1)

Tables Icon

Table 1 Crystals Used in Livermore Tripling Experiments

Metrics