Abstract

A stratospheric trace species measurement concept is presented which utilizes tunable infrared diode lasers as sources for sensitive in situ absorption spectroscopy in selected wavelength regions. As an embodiment of this concept, the Balloon-Borne Laser In Situ Sensor (BLISS) is a high-resolution absorption spectrometer designed to provide measurements of the concentrations of stratospheric species and their diurnal variations. The instrument uses second-harmonic detection of the absorption of tunable diode laser (TDL) radiation (3–30 μm) in a 1-km path length defined by a retroreflector lowered 0.5 km below the BLISS gondola. A He–Ne laser and co-aligned TV camera with CID imaging are used for retroreflector tracking under microprocessor control. Four TDLs will provide simultaneous measurements of molecular species in the 20–40-km altitude range, the predicted minimum-detectable mixing ratio at 30 km being typically ≤0.1 ppbv.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Hudson et al., The Stratosphere: Present and Future, NASA Ref. Publ. 1049 (U.S. GPO, Washington, D.C., 1979).
  2. E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York1976), Chap. 6.
    [CrossRef]
  3. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, Appl. Opt. 19, 3349 (1980), and references therein.
    [CrossRef] [PubMed]
  4. D. T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982).
    [CrossRef] [PubMed]
  5. D. E. Jennings, Appl. Opt. 19, 2695 (1980).
    [CrossRef] [PubMed]
  6. C. W. Rutledge, R. T. Menzies, “A System for Automated Wavelength Control of Tunable Diode Lasers,” Internal Report, Jet Propulsion Laboratory, California Institute of Technology (1982).
  7. P. M. Salomon, W. C. Goss, in Proceedings, AIAA Fourteenth Aerospace Sciences Meeting, Jan. 1976, paper 76-116.
  8. L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
    [CrossRef] [PubMed]
  9. R. Boughner, J. C. Larsen, M. Natarajan, Geophys. Res. Lett. 7, 231 (1980).
    [CrossRef]

1982 (1)

1980 (3)

1978 (1)

Ballik, E. A.

Boughner, R.

R. Boughner, J. C. Larsen, M. Natarajan, Geophys. Res. Lett. 7, 231 (1980).
[CrossRef]

Cassidy, D. T.

Clough, S. A.

El-Sherbiny, M.

Garside, B. K.

Goldman, A.

Goss, W. C.

P. M. Salomon, W. C. Goss, in Proceedings, AIAA Fourteenth Aerospace Sciences Meeting, Jan. 1976, paper 76-116.

Hinkley, E. D.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York1976), Chap. 6.
[CrossRef]

Hudson, R. D.

R. D. Hudson et al., The Stratosphere: Present and Future, NASA Ref. Publ. 1049 (U.S. GPO, Washington, D.C., 1979).

Jennings, D. E.

Kelley, P. L.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York1976), Chap. 6.
[CrossRef]

Ku, R. T.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York1976), Chap. 6.
[CrossRef]

Larsen, J. C.

R. Boughner, J. C. Larsen, M. Natarajan, Geophys. Res. Lett. 7, 231 (1980).
[CrossRef]

McClatchey, R. A.

Menzies, R. T.

C. W. Rutledge, R. T. Menzies, “A System for Automated Wavelength Control of Tunable Diode Lasers,” Internal Report, Jet Propulsion Laboratory, California Institute of Technology (1982).

Natarajan, M.

R. Boughner, J. C. Larsen, M. Natarajan, Geophys. Res. Lett. 7, 231 (1980).
[CrossRef]

Reid, J.

Rothman, L. S.

Rutledge, C. W.

C. W. Rutledge, R. T. Menzies, “A System for Automated Wavelength Control of Tunable Diode Lasers,” Internal Report, Jet Propulsion Laboratory, California Institute of Technology (1982).

Salomon, P. M.

P. M. Salomon, W. C. Goss, in Proceedings, AIAA Fourteenth Aerospace Sciences Meeting, Jan. 1976, paper 76-116.

Snider, D. E.

Young, L. G.

Appl. Opt. (4)

Geophys. Res. Lett. (1)

R. Boughner, J. C. Larsen, M. Natarajan, Geophys. Res. Lett. 7, 231 (1980).
[CrossRef]

Other (4)

R. D. Hudson et al., The Stratosphere: Present and Future, NASA Ref. Publ. 1049 (U.S. GPO, Washington, D.C., 1979).

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York1976), Chap. 6.
[CrossRef]

C. W. Rutledge, R. T. Menzies, “A System for Automated Wavelength Control of Tunable Diode Lasers,” Internal Report, Jet Propulsion Laboratory, California Institute of Technology (1982).

P. M. Salomon, W. C. Goss, in Proceedings, AIAA Fourteenth Aerospace Sciences Meeting, Jan. 1976, paper 76-116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of BLISS measurement technique.

Fig. 2
Fig. 2

Drawing by Norman Miller (JPL) of the BLISS gondola with three TDL Dewars in place.

Fig. 3
Fig. 3

BLISS optical configuration.

Fig. 4
Fig. 4

BLISS gondola for a 2-TDL Dewar flight.

Fig. 5
Fig. 5

Schematic diagram of the BLISS command and data acquisition system.

Fig. 6
Fig. 6

Schematic diagram of the optical path of a single TDL.

Fig. 7
Fig. 7

Harmonic, amplitude, and reference signal chains in the BLISS electronics.

Fig. 8
Fig. 8

Spectral features of NO2 in the 6.2-μm region. Trace A shows the stratospheric transmission spectrum in the 1600–1606-cm−1 region taken from A. Goldman et al., The New Atlas of Stratospheric IR Absorption Spectra, Vol. 2 (1982). Trace B is a TDL scan over a small (0.25-cm−1) part of this spectrum.

Tables (2)

Tables Icon

Table I Summary of BLISS TDL Controller's Performance Characteristics

Tables Icon

Table II Minimum Detectable Mixing Ratios (SNR = 1) for NO2, NO, and HNO3 Compared with the Stratospheric Mixing Ratios; α is the peak absorptance: α1 = 10−4 and α2 = 10−5

Metrics