Abstract

Remote-sensing techniques are generally considered as a means of obtaining data concerning the concentration species at altitudes not accessible to the observing platform; however, in the case of remote-sensing measurements of species in the lower stratosphere a considerable advantage in profile resolution can be obtained by making the measurements from balloons. Data concerning species of interest in the photochemistry of the ozone layer were obtained by balloon flights employing remote-sensing instruments making measurements in the wavelength region from the ultraviolet to millimeter wavelengths. The majority of the data were obtained using instruments to obtain data in the midinfrared wavelengths. Two techniques are generally used: solar absorption or atmospheric emission. Descriptions of the instrumentation used by our group at the University of Denver to obtain data using both techniques are given. The techniques employed in the analysis of the data obtained with these instruments are discussed, and recent results are presented. The potential of both techniques for obtaining data of interest in the photochemistry of the ozone layer is also discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
    [CrossRef]
  2. L. S. Rothman, R. A. McClatchey, Appl. Opt. 15, 2616 (1976).
    [CrossRef]
  3. E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
    [CrossRef]
  4. A. G. Maki, S. S. Wells, J. Mol. Spectrosc. 82, 427 (1980).
    [CrossRef]
  5. A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
    [CrossRef]
  6. L. S. Rothman et al., Appl. Opt. 20, 1323 (1981).
    [CrossRef] [PubMed]
  7. A. Goldman et al., Geophys. Res. Lett. 6, 609 (1979).
    [CrossRef]

1981 (1)

1980 (3)

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

A. G. Maki, S. S. Wells, J. Mol. Spectrosc. 82, 427 (1980).
[CrossRef]

1979 (2)

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

A. Goldman et al., Geophys. Res. Lett. 6, 609 (1979).
[CrossRef]

1976 (1)

Barbe, A.

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Blatherwick, R. D.

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

Camy-Pegret, C.

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Cook, G. R.

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

Flaud, J. M.

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Goldman, A.

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

A. Goldman et al., Geophys. Res. Lett. 6, 609 (1979).
[CrossRef]

Jouve, P.

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Maki, A. G.

A. G. Maki, S. S. Wells, J. Mol. Spectrosc. 82, 427 (1980).
[CrossRef]

Mankin, W. G.

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

McClatchey, R. A.

Murcray, D. G.

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

Murcray, F. J.

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

Niple, E.

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

Rothman, L. S.

Secroun, C.

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Van Allen, J. W.

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

Wells, S. S.

A. G. Maki, S. S. Wells, J. Mol. Spectrosc. 82, 427 (1980).
[CrossRef]

Appl. Opt. (2)

Geophys. Res. Lett. (3)

E. Niple, W. G. Mankin, A. Goldman, D. G. Murcray, F. J. Murcray, Geophys. Res. Lett. 7, 489 (1980).
[CrossRef]

F. J. Murcray, A. Goldman, D. G. Murcray, G. R. Cook, J. W. Van Allen, R. D. Blatherwick, Geophys. Res. Lett. 7, 673 (1980).
[CrossRef]

A. Goldman et al., Geophys. Res. Lett. 6, 609 (1979).
[CrossRef]

J. Mol. Spectrosc. (2)

A. G. Maki, S. S. Wells, J. Mol. Spectrosc. 82, 427 (1980).
[CrossRef]

A. Barbe, C. Secroun, P. Jouve, C. Camy-Pegret, J. M. Flaud, J. Mol. Spectrosc. 75, 403 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Ray geometry and airmass values for 2-km shells along 91, 92, and 93° paths from 30 km. Only one-half of the symmetrical airmass distribution is shown. The minimum altitudes define the layers for the inversion.

Fig. 2
Fig. 2

Balloon-borne solar spectrometer system.

Fig. 3
Fig. 3

Optical diagram of the liquid-helium cooled grating spectrometer.

Fig. 4
Fig. 4

Balloon-borne spectra in the 1845–1860-cm−1 region, obtained on 10 Oct. 1979 from Alamogordo, N.M. with an interferometer at 0.02-cm−1 resolution. Individual scans are displaced for clarity. All the scans were obtained from a float altitude of 33 km. Zenith angles are indicated for each scan. Absorption features marked on one of the scans are identified in Table I.

Fig. 5
Fig. 5

NO and NO2 profiles from balloon flight of 10 Oct. 1979.

Fig. 6
Fig. 6

Solar spectra observed at an altitude of 33 km at various zenith angles near Alamogordo, N.M. (10 Oct. 1979).

Fig. 7
Fig. 7

Comparison between observed spectrum (dotted line, upper figure) and least-squares best-fit calculated spectrum (solid line, upper figure) for solar zenith angle 94.21°. Lower figure shows residuals (observed—calculated) as a percentage of maximum observed amplitude.

Fig. 8
Fig. 8

Vertical mixing ratio profiles for NO2 (N values connected by curve) and water vapor (W values connected by curve).

Fig. 9
Fig. 9

Solar spectra observed from an altitude of 33 km at various zenith angles near Alamogordo, N.M., 10 Oct. 1979.

Fig. 10
Fig. 10

Vertical mixing ratio profiles for HNO3 and O3. Solid lines connect points derived from the scans at various zenith angles; dotted lines are for the atmosphere above the balloon altitude.

Fig. 11
Fig. 11

Portion of an infrared solar spectrum obtained with a balloon-borne interferometer system from an altitude of 39 km and solar zenith of 93.6°. The lines indicated by the arrows are due to N2O and are displaced by 0.15 cm−1 from the positions given on the tape.

Fig. 12
Fig. 12

Infrared solar spectra obtained from 38 km at various solar zenith angles.

Fig. 13
Fig. 13

Sample spectrum of short-wavelength region observed at an altitude of 17.0 km and a zenith angle of 63° on 27 June 1974.

Fig. 14
Fig. 14

Sample spectrum of short-wavelength region observed at an altitude of 38.0 km and a zenith angle of 83° on 27 June 1974.

Fig. 15
Fig. 15

Plot of HNO3 mixing ratio vs altitude for 27 June 1974.

Tables (3)

Tables Icon

Table I Identification of Atmospheric Absorption Features in the 1845–1860-cm−1 Region

Tables Icon

Table II Identification of Atmospheric Absorption Features in the 1600–1610-cm−1 Region

Tables Icon

Table III Identification of Atmospheric and Solar Features in the 1715–1730-cm−1 Region

Metrics