Abstract

The determination of the evaporation from scintillation measurements at several wavelengths is discussed. The refractive-index structure parameter Cn2 derived from the observed amplitude scintillation on a 30-GHz radio link is compared to a spot measurement of this quantity at a much lower height than that of the radio link. After free convection height scaling, a difference of a factor of 3 is found. This factor is discussed. A calculation of the evaporation from the observed radio-wave scintillation yields good agreement with calculations based on the Priestley-Taylor formula.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.
  2. R. L. Coulter, M. L. Wesely, J. Appl. Meteorol. 19, 1209 (1980).
    [Crossref]
  3. J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
    [Crossref]
  4. R. J. Hill, S. F. Clifford, R. S. Lawrence, J. Opt. Soc. Am. 70, 1192 (1980).
    [Crossref]
  5. G. R. Ochs, Ting-i Wang, Appl. Opt. 17, 3774 (1978).
    [Crossref] [PubMed]
  6. W. Kohsiek, Boundary Layer Meteorol. 24, 89 (1982).
    [Crossref]
  7. J. C. Wyngaard, Y. Izumi, S. A. Collins, J. Opt. Soc. Am. 61, 1646 (1971).
    [Crossref]
  8. J. C. Wyngaard, M. A. LeMone, J. Atmos. Sci. 37, 1573 (1980).
    [Crossref]
  9. M. H. A. J. Herben, Electron. Lett. 18, 287 (1982).
    [Crossref]
  10. H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
    [Crossref]
  11. J. L. Monteith, Principles of Environmental Physics (Edward Arnold, London, 1973), p. 179.
  12. E. K. Webb, “Evaporation from Catchments,” in Prediction in Catchment Hydrology (Australian Academy of Science, Canberra, 1975).
  13. D. M. Burridge, A. J. Gadd, “The Meteorological Office Operational 10-level Numerical Weather Prediction Model,” Scientific Paper 34, U.K. Meteorological Office (1977).
  14. H. A. R. De Bruin, A. A. M. Holtslag, J. Appl. Meteorol. 21, 1610 (1982).
    [Crossref]
  15. K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
    [Crossref]
  16. G. A. McBean, M. Miyake, Quart. J. R. Meteorol. Soc. 98, 383 (1972).
    [Crossref]
  17. P. Schotanus, “Turbulente Fluxen in Inhomogene Omstandigheden,” KNMI Scientific Report WR 82-3, 1982 (in Dutch).
  18. This implies that the free convection relation is adopted. Such is better justified at a height of 60 m than at 10 m because − z/Lθ has a larger value at 60 m than at 10 m.
  19. The β in Eq. (12) is a different quantity than the β in Eq. (3).
  20. W. Kohsiek, M. H. A. J. Herben, “Evaporation Measurement by Optical and Radio Wave Scintillation,” in Optical Techniques for Remote Probing of the Atmosphere, Incline Village (Optical Society of America, Washington, D.C., 1983), paper MC30.

1982 (3)

W. Kohsiek, Boundary Layer Meteorol. 24, 89 (1982).
[Crossref]

M. H. A. J. Herben, Electron. Lett. 18, 287 (1982).
[Crossref]

H. A. R. De Bruin, A. A. M. Holtslag, J. Appl. Meteorol. 21, 1610 (1982).
[Crossref]

1980 (3)

J. C. Wyngaard, M. A. LeMone, J. Atmos. Sci. 37, 1573 (1980).
[Crossref]

R. L. Coulter, M. L. Wesely, J. Appl. Meteorol. 19, 1209 (1980).
[Crossref]

R. J. Hill, S. F. Clifford, R. S. Lawrence, J. Opt. Soc. Am. 70, 1192 (1980).
[Crossref]

1978 (3)

G. R. Ochs, Ting-i Wang, Appl. Opt. 17, 3774 (1978).
[Crossref] [PubMed]

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[Crossref]

K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
[Crossref]

1973 (1)

H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
[Crossref]

1972 (1)

G. A. McBean, M. Miyake, Quart. J. R. Meteorol. Soc. 98, 383 (1972).
[Crossref]

1971 (1)

Burridge, D. M.

D. M. Burridge, A. J. Gadd, “The Meteorological Office Operational 10-level Numerical Weather Prediction Model,” Scientific Paper 34, U.K. Meteorological Office (1977).

Clifford, S. F.

R. J. Hill, S. F. Clifford, R. S. Lawrence, J. Opt. Soc. Am. 70, 1192 (1980).
[Crossref]

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[Crossref]

Cole, R. S.

K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
[Crossref]

Collins, S. A.

Coulter, R. L.

R. L. Coulter, M. L. Wesely, J. Appl. Meteorol. 19, 1209 (1980).
[Crossref]

De Bruin, H. A. R.

H. A. R. De Bruin, A. A. M. Holtslag, J. Appl. Meteorol. 21, 1610 (1982).
[Crossref]

Gadd, A. J.

D. M. Burridge, A. J. Gadd, “The Meteorological Office Operational 10-level Numerical Weather Prediction Model,” Scientific Paper 34, U.K. Meteorological Office (1977).

Hardy, K. R.

H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
[Crossref]

Herben, M. H. A. J.

M. H. A. J. Herben, Electron. Lett. 18, 287 (1982).
[Crossref]

W. Kohsiek, M. H. A. J. Herben, “Evaporation Measurement by Optical and Radio Wave Scintillation,” in Optical Techniques for Remote Probing of the Atmosphere, Incline Village (Optical Society of America, Washington, D.C., 1983), paper MC30.

Hill, R. J.

R. J. Hill, S. F. Clifford, R. S. Lawrence, J. Opt. Soc. Am. 70, 1192 (1980).
[Crossref]

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

Ho, K. L.

K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
[Crossref]

Holtslag, A. A. M.

H. A. R. De Bruin, A. A. M. Holtslag, J. Appl. Meteorol. 21, 1610 (1982).
[Crossref]

Izumi, Y.

Kaimal, J. C.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

Kohsiek, W.

W. Kohsiek, Boundary Layer Meteorol. 24, 89 (1982).
[Crossref]

W. Kohsiek, M. H. A. J. Herben, “Evaporation Measurement by Optical and Radio Wave Scintillation,” in Optical Techniques for Remote Probing of the Atmosphere, Incline Village (Optical Society of America, Washington, D.C., 1983), paper MC30.

Lawrence, R. S.

LeMone, M. A.

J. C. Wyngaard, M. A. LeMone, J. Atmos. Sci. 37, 1573 (1980).
[Crossref]

Little, C. G.

H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
[Crossref]

Mavrokoukoulakis, N. D.

K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
[Crossref]

McBean, G. A.

G. A. McBean, M. Miyake, Quart. J. R. Meteorol. Soc. 98, 383 (1972).
[Crossref]

Miyake, M.

G. A. McBean, M. Miyake, Quart. J. R. Meteorol. Soc. 98, 383 (1972).
[Crossref]

Monteith, J. L.

J. L. Monteith, Principles of Environmental Physics (Edward Arnold, London, 1973), p. 179.

Ochs, G. R.

G. R. Ochs, Ting-i Wang, Appl. Opt. 17, 3774 (1978).
[Crossref] [PubMed]

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

Otterson, H.

H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
[Crossref]

Schotanus, P.

P. Schotanus, “Turbulente Fluxen in Inhomogene Omstandigheden,” KNMI Scientific Report WR 82-3, 1982 (in Dutch).

Sorensen, D. C.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

Wang, Ting-i

Webb, E. K.

E. K. Webb, “Evaporation from Catchments,” in Prediction in Catchment Hydrology (Australian Academy of Science, Canberra, 1975).

Wesely, M. L.

R. L. Coulter, M. L. Wesely, J. Appl. Meteorol. 19, 1209 (1980).
[Crossref]

Wyngaard, J. C.

J. C. Wyngaard, M. A. LeMone, J. Atmos. Sci. 37, 1573 (1980).
[Crossref]

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[Crossref]

J. C. Wyngaard, Y. Izumi, S. A. Collins, J. Opt. Soc. Am. 61, 1646 (1971).
[Crossref]

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

Appl. Opt. (1)

Atmos. Terr. Phys. (1)

K. L. Ho, N. D. Mavrokoukoulakis, R. S. Cole, Atmos. Terr. Phys. 40, 745 (1978).
[Crossref]

Boundary Layer Meteorol. (2)

H. Otterson, K. R. Hardy, C. G. Little, Boundary Layer Meteorol. 4, 47 (1973).
[Crossref]

W. Kohsiek, Boundary Layer Meteorol. 24, 89 (1982).
[Crossref]

Electron. Lett. (1)

M. H. A. J. Herben, Electron. Lett. 18, 287 (1982).
[Crossref]

J. Appl. Meteorol. (2)

R. L. Coulter, M. L. Wesely, J. Appl. Meteorol. 19, 1209 (1980).
[Crossref]

H. A. R. De Bruin, A. A. M. Holtslag, J. Appl. Meteorol. 21, 1610 (1982).
[Crossref]

J. Atmos. Sci. (2)

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[Crossref]

J. C. Wyngaard, M. A. LeMone, J. Atmos. Sci. 37, 1573 (1980).
[Crossref]

J. Opt. Soc. Am. (2)

Quart. J. R. Meteorol. Soc. (1)

G. A. McBean, M. Miyake, Quart. J. R. Meteorol. Soc. 98, 383 (1972).
[Crossref]

Other (8)

P. Schotanus, “Turbulente Fluxen in Inhomogene Omstandigheden,” KNMI Scientific Report WR 82-3, 1982 (in Dutch).

This implies that the free convection relation is adopted. Such is better justified at a height of 60 m than at 10 m because − z/Lθ has a larger value at 60 m than at 10 m.

The β in Eq. (12) is a different quantity than the β in Eq. (3).

W. Kohsiek, M. H. A. J. Herben, “Evaporation Measurement by Optical and Radio Wave Scintillation,” in Optical Techniques for Remote Probing of the Atmosphere, Incline Village (Optical Society of America, Washington, D.C., 1983), paper MC30.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium of Meteorological Observations and Instruments, Denver (American Meteorological Society, Boston, 1978), pp. 47–50.

J. L. Monteith, Principles of Environmental Physics (Edward Arnold, London, 1973), p. 179.

E. K. Webb, “Evaporation from Catchments,” in Prediction in Catchment Hydrology (Australian Academy of Science, Canberra, 1975).

D. M. Burridge, A. J. Gadd, “The Meteorological Office Operational 10-level Numerical Weather Prediction Model,” Scientific Paper 34, U.K. Meteorological Office (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Amplitude spectrum of the 30-GHz signal on 26 May 1982, 12:30–12:45 GMT. The broken line indicates the slope of theoretical spectrum obtained from Herben9 for a receive antenna aperture diameter of 0.5 m. It corresponds to (ΔA/A)2f−2.83, where A is the average amplitude, and ΔA is the variation around A.

Fig. 2
Fig. 2

Refractive-index spectrum Sn calculated from in situ observed temperature and humidity fluctuations for the same event as Fig. 1. In the inertial subrange the spectrum follows an f−5/3 dependence as indicated by the broken line.

Fig. 3
Fig. 3

Scatter diagram of C n 2 calculated from radio-wave scintillation and C n 2 calculated from in situ observed temperature and humidity fluctuations. The broken line indicates the expected relationship and has a slope of 0.092. The full regression line has a slope of 0.24; omitting the right-most data point, the slope of the regression line is 0.29. These are data from 20 runs of 15-min duration each.

Tables (1)

Tables Icon

Table I Evaporation Calculated from Radio-Wave Scintillation LE 0 RW Compared with Evaporation Calculated with the Priestley-Taylor Formula LE 0 PT

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

C n 2 = A T 2 T 2 C T 2 + A Q 2 Q 2 C Q 2 + 2 A T A Q T Q C TQ .
E o = β ( C T 2 ) 1 / 4 ( C Q 2 ) 1 / 2 ( f 1 f 3 ) 1 / 2 f 1 3 / 4 ( z L θ ) 1 / 2 ,
β = z ( gk T ) 1 / 2 .
E o = β ( C T 2 ) 1 / 4 ( C Q 2 ) 1 / 2 h ( z L θ ) .
( n 1 ) × 10 6 = 77.6 T ( p + 4810 T e ) ,
dn = A T T dT + A Q Q dQ ,
A T = T ( n T ) Q = const = ( 77.6 p T 1723 Q T ) × 10 6 ,
A Q = Q ( n Q ) T = const = ( 1723 Q T ) × 10 6 .
Φ n ( κ ) = 0.25 C n 2 κ 5 / 3 ,
( C T 2 / C Q 2 ) 1 / 2 = 1.33 ,
C TQ / ( C T 2 C Q 2 ) 1 / 2 = 0.87 .
LE 0 PT = α s s + γ ( Q * G ) + β ,
LE 0 PT ( Wm 2 )
LE 0 RW LE 0 PT

Metrics