Abstract

The total dispersion characteristics of the doubly clad Panda (or bow-tie) fibers have been investigated. It is shown that the contribution of the photoelastic effect to the total dispersion becomes of the order of several psec/km · nm in the 1.5–1.7-μm wavelength region. By careful adjustment of the cutoff wavelength, the total dispersion is reduced to within ±1 psec/km · nm over the 1.38–1.70-μm wavelength region for the HE11x mode and 1.38–1.68 μm for the HE11y mode, respectively.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, in Technical Digest, Third Internatinal Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper TUB1.
  2. R. Ulrich, M. Johnson, Opt. Lett. 4, 152 (1979).
    [CrossRef] [PubMed]
  3. Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-18, 758 (1982).
    [CrossRef]
  4. V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
    [CrossRef]
  5. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
    [CrossRef]
  6. R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
    [CrossRef]
  7. K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
    [CrossRef]
  8. T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
    [CrossRef]
  9. S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).
  10. K. Okamoto, T. Edahiro, N. Shibata, Opt. Lett. 7, 569 (1982).
    [CrossRef] [PubMed]
  11. W. Primak, D. Post, J. Appl. Phys. 30, 779 (1959).
    [CrossRef]
  12. G. W. Scherer, Appl. Opt. 19, 2000 (1980).
    [CrossRef] [PubMed]
  13. N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).
  14. K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
    [CrossRef]
  15. A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).
  16. A. H. Hartog, U. Southampton; unpublished work.

1982

Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-18, 758 (1982).
[CrossRef]

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

K. Okamoto, T. Edahiro, N. Shibata, Opt. Lett. 7, 569 (1982).
[CrossRef] [PubMed]

1981

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

1980

1979

R. Ulrich, M. Johnson, Opt. Lett. 4, 152 (1979).
[CrossRef] [PubMed]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

1978

V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

1959

W. Primak, D. Post, J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Birch, R. D.

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

Cohen, L. G.

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

Edahiro, T.

K. Okamoto, T. Edahiro, N. Shibata, Opt. Lett. 7, 569 (1982).
[CrossRef] [PubMed]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

Hartog, A. H.

A. H. Hartog, U. Southampton; unpublished work.

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Jang, S. J.

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

Johnson, M.

Kaiser, P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Kaminow, I. P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Kawana, A.

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

Mammel, W. L.

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

Miya, T.

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

Muhlich, A.

A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).

Ohmori, Y.

Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-18, 758 (1982).
[CrossRef]

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

Okamoto, K.

K. Okamoto, T. Edahiro, N. Shibata, Opt. Lett. 7, 569 (1982).
[CrossRef] [PubMed]

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

Okoshi, T.

T. Okoshi, in Technical Digest, Third Internatinal Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper TUB1.

Payne, D. N.

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

Post, D.

W. Primak, D. Post, J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Primak, W.

W. Primak, D. Post, J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Rau, K.

A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).

Saifi, M. S.

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

Sasaki, Y.

Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-18, 758 (1982).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

Scherer, G. W.

Shibata, N.

Simmat, F.

A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).

Sinha, N. K.

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

Treber, N.

A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).

Ulrich, R.

Varnham, M. P.

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Bell Syst. Tech. J.

S. J. Jang, L. G. Cohen, W. L. Mammel, M. S. Saifi, Bell Syst. Tech. J. 61, 385 (1982).

Electron. Lett.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, Electron. Lett. 15, 729 (1979).
[CrossRef]

IEEE J. Quantum Electron

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-17, 858 (1981).
[CrossRef]

Y. Ohmori, Y. Sasaki, IEEE J. Quantum Electron QE-18, 758 (1982).
[CrossRef]

IEEE J. Quantum Electron.

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

J. Appl. Phys.

W. Primak, D. Post, J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Opt. Lett.

Phys. Chem. Glasses

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

Other

T. Okoshi, in Technical Digest, Third Internatinal Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper TUB1.

A. Muhlich, K. Rau, F. Simmat, N. Treber, “A New Doped Synthetic Fused Silica as Bulk Material for Low-Loss Optical Fibers,” in Technical Digest, First European Conference on Optical Communication, London (1975).

A. H. Hartog, U. Southampton; unpublished work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross section (a) and refractive-index profile (b) of the Ω fiber. The refractive index of the stress-applying part is matched with the index of the cladding.

Fig. 2
Fig. 2

X(υ) and Y(υ) in the Ω fiber with Δ1 = 0.7%, Δ2 = −0.5%, 2a = 5.3 μm (λc = 0.98 μm), T = 0.4, R = 62.5 μm, and r2 = 0.5R. The parameter r1 is the inner radius of the stress-applying part.

Fig. 3
Fig. 3

Waveguide, material, and total dispersion for the Ω fiber when the photoelastic effect is ignored [X(υ) = Y(υ) = 0]. Parameters are the same as those used in Fig. 2.

Fig. 4
Fig. 4

Fx(υ) and Fy(υ) in the Ω fiber with the waveguide structure shown in Fig. 2.

Fig. 5
Fig. 5

Total dispersion characteristics for the HE 11 x mode in the Ω fiber. Core diameter is changed to 2a = 5.4 μm (λc = 1.0 μm) such that the total dispersion is optimized for r1 = 4a.

Fig. 6
Fig. 6

Total dispersion characteristics for the HE 11 y mode in the Ω fiber having the same parameters as Fig. 5.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

β 1 = β ( 0 ) Γ 1 ,
β 2 = β ( 0 ) Γ 2 ,
Γ i = ω 0 0 2 π 0 E i * X E i rdrd θ ,
Γ 1 = k [ ( C 1 + C 2 ) σ x o X ( υ ) + 2 C 2 σ y o Y ( υ ) ] ,
Γ 2 = k [ 2 C 2 σ x o X ( υ ) + ( C 1 + C 2 ) σ y o ( Y ( υ ) ] ,
X ( υ ) = 0 2 π 0 σ x ( r , θ ) p ( r , θ ; υ ) rdrd θ σ x o 0 2 π 0 p ( r , θ ; υ ) rdrd θ ,
Y ( υ ) = 0 2 π 0 σ y ( r , θ ) p ( r , θ ; υ ) rdrd θ σ y o 0 2 π 0 p ( r , θ ; υ ) rdrd θ ,
V = k a n 1 2 n 3 2 ,
ρ 1 = 1 λ C k d 2 β 1 d k 2 = 1 λ C k d 2 β ( 0 ) d k 2 1 λ C k d 2 Γ 1 d k 2 = ρ ( 0 ) γ 1 ,
ρ 2 = 1 λ C k d 2 β 2 d k 2 = 1 λ C k d 2 β ( 0 ) d k 2 1 λ C k d 2 Γ 2 d k 2 = ρ ( 0 ) γ 2 ,
ρ ( 0 ) = 1 C { λ d 2 n 1 d λ 2 d ( υ b ) d υ + [ 1 d ( υ b ) d υ ] λ d 2 n 3 d λ 2 } + N 1 Δ 1 λ C υ d 2 ( υ b ) d V 2 ,
b ( υ ) = [ β ( 0 ) / k ] 2 n 3 2 n 1 2 n 3 2 .
γ 1 = 1 λ C [ ( C 1 + C 2 ) σ x o F x ( υ ) + 2 C 2 σ y o F y ( υ ) ] ,
γ 2 = 1 λ C [ 2 C 2 σ x o F x ( υ ) + ( C 1 + C 2 ) σ y o F y ( υ ) ] ,
F x ( υ ) = υ d 2 ( υ X ) d υ 2 ,
F y ( υ ) = υ d 2 ( υ Y ) d υ 2 .

Metrics