Abstract

The transmission performance of trapezoidal-index profile single-mode fibers that can operate with zero dispersion in the 1.5-μm region has been investigated. The exact numerical calculations of propagation characteristics for these lightguides established a variety of relationships in terms of the parameters of a trapezoidal-index profile. One of the profile parameters that defines the shape of a trapezoid is the aspect ratio S, which ranges between 0 and 1. It was found that as the aspect ratio decreases from 1.0 to 0.3 the optimum core radius of the fiber gradually increases. But when S is <0.3, it approaches a constant equal to the value of the triangular-index profile (S = 0).

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
    [CrossRef]
  2. U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).
  3. U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).
  4. M. A. Saifi, S. J. Jang, L. G. Cohen, J. Stone, Opt. Lett. 7, 43 (1982).
    [CrossRef] [PubMed]
  5. B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
    [CrossRef]
  6. M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).
  7. K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
    [CrossRef]
  8. J. Sakai, Appl. Opt. 18, 951 (1979).
    [CrossRef] [PubMed]
  9. D. Marcuse, Bell Syst. Tech. J. 55, 937 (1976).
  10. M. O. Vassel, Opto-Electronics 5, 271 (1974).
    [CrossRef]
  11. S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.
  12. U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 704 (1982).
    [CrossRef] [PubMed]
  13. U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 3430 (1982).
    [CrossRef] [PubMed]
  14. D. J. Malyon, A. P. McDonna, Electron. Lett. 18, 445 (1982).
    [CrossRef]
  15. W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
    [CrossRef]
  16. D. Marcuse, Appl. Opt. 18, 2930 (1979).
    [CrossRef] [PubMed]

1982 (5)

1981 (2)

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).

1980 (1)

M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).

1979 (4)

J. Sakai, Appl. Opt. 18, 951 (1979).
[CrossRef] [PubMed]

W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
[CrossRef]

D. Marcuse, Appl. Opt. 18, 2930 (1979).
[CrossRef] [PubMed]

W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
[CrossRef]

1977 (1)

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

1976 (1)

D. Marcuse, Bell Syst. Tech. J. 55, 937 (1976).

1974 (1)

M. O. Vassel, Opto-Electronics 5, 271 (1974).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Beales, K. J.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Carnevale, A.

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 704 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 3430 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).

Cohen, L. G.

Cooper, D. M.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Day, C. R.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Furuya, K.

M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
[CrossRef]

Izawa, T.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.

Jang, S. J.

Kobayashi, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.

Kubota, M.

M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).

Malyon, D. J.

D. J. Malyon, A. P. McDonna, Electron. Lett. 18, 445 (1982).
[CrossRef]

Marcuse, D.

D. Marcuse, Appl. Opt. 18, 2930 (1979).
[CrossRef] [PubMed]

D. Marcuse, Bell Syst. Tech. J. 55, 937 (1976).

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
[CrossRef]

McDonna, A. P.

D. J. Malyon, A. P. McDonna, Electron. Lett. 18, 445 (1982).
[CrossRef]

Paek, U. C.

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 704 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 3430 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).

Petermann, K.

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

Peterson, G. E.

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 3430 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Appl. Opt. 21, 704 (1982).
[CrossRef] [PubMed]

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
[CrossRef]

Rush, J. D.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Saifi, M. A.

Sakai, J.

Shibata, N.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.

Shibata, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.

Stone, J.

Suematsu, Y.

M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).

Vassel, M. O.

M. O. Vassel, Opto-Electronics 5, 271 (1974).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (3)

D. Marcuse, Bell Syst. Tech. J. 55, 937 (1976).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 583 (1981).

U. C. Paek, G. E. Peterson, A. Carnevale, Bell Syst. Tech. J. 60, 1727 (1981).

Electron Lett. (1)

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day, J. D. Rush, Electron Lett. 18, 842 (1982).
[CrossRef]

Electron. Lett. (2)

W. A. Gambling, H. Matsumura, C. M. Ragdale, Electron. Lett. 15, 474 (1979).
[CrossRef]

D. J. Malyon, A. P. McDonna, Electron. Lett. 18, 445 (1982).
[CrossRef]

Microwaves Opt. Acoust. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, Microwaves Opt. Acoust. 3, 239 (1979).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

Opto-Electronics (1)

M. O. Vassel, Opto-Electronics 5, 271 (1974).
[CrossRef]

Trans. IECE Jpn. (1)

M. Kubota, K. Furuya, Y. Suematsu, Trans. IECE Jpn. E63, 723 (1980).

Other (1)

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, in Technical Digest, First International Conference on Intecreated Optics and Optical Fiber Communication (IECE, Japan, 1977), paper B8-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Trapezoidal-index profiles along with α-index profile.

Fig. 2
Fig. 2

Normalized cutoff frequency Vc in terms of the aspect ratio S and profile exponent α.

Fig. 3
Fig. 3

Plots of time delay difference and total dispersion with respect to λ for two different values of Δ. S = 0.25 and a = 3.4 μm.

Fig. 4
Fig. 4

Plots of total dispersion vs wavelength for different values of Δ and core radius. S = 0.25 (Vc = 3.816).

Fig. 5
Fig. 5

Relationship between total dispersion and core radius for a varying aspect ratio, and the dispersions are compared with that of α = 2. λ = 1.50 μm, and Δ = 0.008.

Fig. 6
Fig. 6

Total dispersion vs core radius for a varying aspect ratio, and the dispersions are compared with that of α = 2. λ = 1.55 μm Δ = 0.008.

Fig. 7
Fig. 7

Plots of waveguide dispersion vs core radius in terms of S and λ. Δ = 0.008, λ = 1.50, and 1.55 μm.

Fig. 8
Fig. 8

Total dispersion vs core radius for different values of Δ and S. λ = 1.50 μm.

Fig. 9
Fig. 9

Total dispersion vs core radius for different values of Δ and S. λ = 1.55 μm.

Fig. 10
Fig. 10

Optimum core radius vs aspect ratio S for three different wavelengths. λ = 1.45, 1.50, 1.55 μm. Δ = 0.008.

Fig. 11
Fig. 11

Wavelength at zero total dispersion vs optimum core radius for three different values of Δ. Δ = 0.006, 0.007, 0.008. S = 0.25 (Vc = 3.816).

Fig. 12
Fig. 12

Relation between wavelength at zero total dispersion and optimum core radius in terms of S and Δ. Δ = 0.006 and 0.008.

Fig. 13
Fig. 13

Relation between wavelength at zero total dispersion and optimum core radius for different values of S is compared with those obtained from the α-index profile. Δ = 0.008.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n = { n 1 , for 0 r w , n 1 [ 1 Δ ( r w a w ) ] , for w r a ,
β 1 2 ( Λ 21 Λ 22 ) n 2 2 γ 0 ( Λ 11 Λ 12 ) = 0 ;
β 1 2 ( Λ 32 Λ 31 ) γ 0 ( Λ 42 Λ 41 ) = 0 .
β 1 = n e 2 n 2 2 γ 0 = ξ K 0 ( ξ ) / K 0 ( ξ ) .
V c = ( 2 π a λ c ) n 1 2 n 2 2 .
n = n 1 [ 1 Δ ( r / a ) α ] .
G = 0 1 ( n 2 n 2 2 n 1 2 n 2 2 ) r d r ,
V c = 2.405 2 G .
V c = 2.405 1 1 / 3 ( 2 S S 2 ) .
n g = n e n e λ .
Δ τ = τ τ 0 = L c [ n g ( λ ) n g ( λ r ) ] .
D t = 1 c ( n g λ ) .
D t = D t ( λ , a , S , Δ ) .
D t ( λ k , a , S , Δ ) = 0 .

Metrics