Abstract

This paper describes excess loss of single-mode jacketed optical fibers at low temperature. A structural model is proposed for the jacketed fiber in order to investigate the relationship between the structure and excess loss. This model clarifies the excess loss increase mechanism that any initial irregularity existing in the jacketed fiber increases due to shrinkage of the jacket and causes excess loss. These results show that reducing the buffer diameter and controlling the fiber deformation inside the jacket are effective in suppressing excess loss at low temperature.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.
  2. K. Ishihara, Trans. IECE Jpn. J64-B, 714 (1981), in Japanese.
  3. Y. Katsuyama, Y. Mitsunaga, Y. Ishida, K. Ishihara, Appl. Opt. 19, 4200 (1980).
    [CrossRef] [PubMed]
  4. Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.
  5. T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.
  6. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  7. S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

1981 (2)

K. Ishihara, Trans. IECE Jpn. J64-B, 714 (1981), in Japanese.

T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.

1980 (2)

Y. Katsuyama, Y. Mitsunaga, Y. Ishida, K. Ishihara, Appl. Opt. 19, 4200 (1980).
[CrossRef] [PubMed]

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

1979 (1)

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

1976 (1)

Gere, J. M.

S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Inada, K.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Ishida, Y.

Ishihara, K.

K. Ishihara, Trans. IECE Jpn. J64-B, 714 (1981), in Japanese.

Y. Katsuyama, Y. Mitsunaga, Y. Ishida, K. Ishihara, Appl. Opt. 19, 4200 (1980).
[CrossRef] [PubMed]

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Katsuyama, Y.

Kawata, O.

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

Kobayashi, T.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Kojima, N.

T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

Marcuse, D.

Mitsunaga, Y.

Mogi, A.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Negishi, Y.

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

Sugawara, Y.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Tanaka, M.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

Timoshenko, S. P.

S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Yabuta, T.

T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

Yamashita, K.

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

Yoshizawa, N.

T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Trans. IECE Jpn. (4)

T. Yabuta, K. Yamashita, O. Kawata, Y. Negishi, N. Kojima, Trans. IECE Jpn. J63-B, 860 (1980), in Japanese.

K. Ishihara, Trans. IECE Jpn. J64-B, 714 (1981), in Japanese.

Y. Sugawara, T. Kobayashi, M. Tanaka, A. Mogi, K. Inada, K. Ishihara, Trans. IECE Jpn. J62-C, 864 (1979), in Japanese.

T. Yabuta, N. Yoshizawa, N. Kojima, Trans. IECE Jpn. J64-B, 1149 (1981), in Japanese.

Other (1)

S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Cross section of jacketed fiber.

Fig. 2
Fig. 2

Structural model of jacketed fiber.

Fig. 3
Fig. 3

Diagram of fiber deformation.

Fig. 4
Fig. 4

Change of fiber deformation.

Fig. 5
Fig. 5

Schematic figure of fiber deformation.

Fig. 6
Fig. 6

Excess loss at low temperature.

Fig. 7
Fig. 7

Structural effect on excess loss.

Fig. 8
Fig. 8

Pitch of initial deformation.

Fig. 9
Fig. 9

Wave amplitude of initial deformation.

Fig. 10
Fig. 10

Comparison between experiment and calculation.

Fig. 11
Fig. 11

Buffer diameter effect on excess loss.

Fig. 12
Fig. 12

Jacketed diameter effect on excess loss.

Fig. 13
Fig. 13

Initial irrregularity distribution.

Fig. 14
Fig. 14

Maximum fiber deformation design.

Fig. 15
Fig. 15

Sectional area design of jacket.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

F = E 2 ( T ) S 2 ( β Δ T ε ) ,
W 0 = h on sin n π x l ,
EI d 4 W 1 d x 4 + F d 2 ( W 1 + W 0 ) d x 2 + E 1 W 1 = 0 ,
W = n = 1 h n sin n π x l = n = 1 h on 1 F / F n sin n π x l ,
h n h on = 1 1 F / F n .
W 0 = h o sin n π x P ,
S P [ 1 + 1 4 h o 2 ( 2 π P ) 2 ] .
S P [ 1 + 1 4 h o 2 ( 2 π P ) 2 ] = ( P Δ P ) [ 1 + 1 4 h 2 ( 2 π P ) 2 ] .
ε = Δ P P = π 2 ( h o P ) 2 [ ( h h o ) 2 1 ] ,
y = h / h o .
y 3 + ( f 0 f 2 f 1 f 2 1 ) y f 0 f 2 = 0 ,
f 0 = E I ( 2 π P ) 2 + E 1 / ( 2 π P ) 2 , f 1 = E 2 S 2 α Δ T , f 2 = E 2 S 2 π 2 ( h o P ) 2 .
W h sin 2 π x P = y o h o sin 2 π x P .
h max = 1 2 ( D 1 d ) ,
ρ ( x ) | d 2 w d x 2 | = y o h o ( 2 π P ) 2 | sin 2 π x P | .
α ( x ) = π κ 2 exp [ 2 3 ( γ 3 / β 2 ) / ρ ( x ) ] 2 γ 3 / 2 V 2 1 / ρ ( x ) K 1 ( γ a ) K 1 ( γ a ) ,
α ̅ = n 0 ln α n ( x ) dx ,
Y = ( f 0 f 1 f 2 ) / 3 f 2 ,
Z = f 0 / 2 f 2 ,
G = Z 2 + Y 3 .
y 0 = 2 Y cos ( θ / 3 ) ,
θ = cos 1 ( Z / Y Y ) .
G 0 = G + Z ;
y 0 = ( G Z ) 1 / 3 ( G + Z ) 1 / 3 ;
y 0 = ( G Z ) 1 / 3 + ( G + Z ) 1 / 3 .
ρ max = h max ( 2 π / P ) 2 .
Δ ρ max = 2 ρ max ( Δ P / P ) .
Δ P / P < α Δ T .
EI d 4 W d x 4 + F d 2 W d x 2 + E 1 W = 0 .
W = h sin 2 π x P .
F = 4 π 2 EI P 2 + E 1 P 2 4 π 2 .
P = 2 π ( E I / E 1 ) 1 / 4 .
F min = 2 EI E 1 .

Metrics