Abstract

The plane ends (PE) of various multimode optical fibers have been transformed into (a) hemispherical ends (HE) and (b) taper-with-hemisphere ends (TE) by using a microtorch and also a CO2 laser for HE only. We confirmed that the launching efficiency η from semiconductor lasers into multimode fibers is much greater than TE and HE compared with PE, with TE being the most efficient. A rigorous comparison between these three launching arrangements is reported here for the first time together with detailed analysis of similar published work. The effect of various misalignments is also investigated and compared for the three fiber terminations.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. D. Sunak, M. A. Zampronio, Appl. Opt. 22, 2337 (1983).
    [CrossRef] [PubMed]
  2. D. Kato, J. Appl. Phys. 44, 2756 (1973).
    [CrossRef]
  3. C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
    [CrossRef]
  4. U. C. Paek, A. L. Weaver, Appl. Opt. 14, 294 (1975).
    [CrossRef] [PubMed]
  5. W. W. Benson, D. A. Pinnow, T. C. Rich, Appl. Opt. 14, 2815 (1975).
    [CrossRef] [PubMed]
  6. J. Wittmann, Electron. Lett. 11, 477 (1975).
    [CrossRef]
  7. C. C. Timmermann, Appl. Opt. 15, 2432 (1976).
    [CrossRef] [PubMed]
  8. G. Khoe et al., Electron. Lett. 14, 666 (1978).
    [CrossRef]
  9. S. Hopland et al., in Technical Digest, Fourth ECOC, Genoa (1978), paper 9.3.
  10. L. d'Auria et al., Electron. Lett. 16, 322 (1980).
    [CrossRef]
  11. M. L. Dakss et al., Electron. Lett. 16, 421 (1980).
    [CrossRef]
  12. M. L. Dakss et al., Electron. Lett. 16, 463 (1980).
    [CrossRef]
  13. H. Kuwahara et al., Proc. IEEE 67, 1456 (1979).
    [CrossRef]
  14. T. Ozeki et al., Electron. Lett. 12, 607 (1976).
    [CrossRef]
  15. K. Kurokawa et al., IEEE Trans. Microwave Theory Tech. MTT-23, 309 (1975).
    [CrossRef]
  16. S. Sugimoto et al., at Topical Meeting on Optical Fiber Transmission, 1975, Williamsburg, Va., paper WD1.
  17. E. Weidel, Opt. Quantum Electron. 8, 301 (1976).
    [CrossRef]
  18. M. Maeda et al., Appl. Opt. 16, 1966 (1977).
    [CrossRef] [PubMed]
  19. Y. Odagiri et al., Electron. Lett. 13, 395 (1977).
    [CrossRef]
  20. G. Khoe et al., in Technical Digest, Third ECOC, Munich (1977), p. 176.
  21. T. Horimatsu, M. Sasaki, K. Aoyama, Appl. Opt. 19, 1984 (1980).
    [CrossRef] [PubMed]
  22. T. Ozeki et al., Electron. Lett. 12, 407 (1976).
    [CrossRef]

1983

1980

T. Horimatsu, M. Sasaki, K. Aoyama, Appl. Opt. 19, 1984 (1980).
[CrossRef] [PubMed]

L. d'Auria et al., Electron. Lett. 16, 322 (1980).
[CrossRef]

M. L. Dakss et al., Electron. Lett. 16, 421 (1980).
[CrossRef]

M. L. Dakss et al., Electron. Lett. 16, 463 (1980).
[CrossRef]

1979

H. Kuwahara et al., Proc. IEEE 67, 1456 (1979).
[CrossRef]

1978

G. Khoe et al., Electron. Lett. 14, 666 (1978).
[CrossRef]

1977

M. Maeda et al., Appl. Opt. 16, 1966 (1977).
[CrossRef] [PubMed]

Y. Odagiri et al., Electron. Lett. 13, 395 (1977).
[CrossRef]

1976

T. Ozeki et al., Electron. Lett. 12, 407 (1976).
[CrossRef]

C. C. Timmermann, Appl. Opt. 15, 2432 (1976).
[CrossRef] [PubMed]

E. Weidel, Opt. Quantum Electron. 8, 301 (1976).
[CrossRef]

T. Ozeki et al., Electron. Lett. 12, 607 (1976).
[CrossRef]

1975

K. Kurokawa et al., IEEE Trans. Microwave Theory Tech. MTT-23, 309 (1975).
[CrossRef]

J. Wittmann, Electron. Lett. 11, 477 (1975).
[CrossRef]

U. C. Paek, A. L. Weaver, Appl. Opt. 14, 294 (1975).
[CrossRef] [PubMed]

W. W. Benson, D. A. Pinnow, T. C. Rich, Appl. Opt. 14, 2815 (1975).
[CrossRef] [PubMed]

1974

C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
[CrossRef]

1973

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Aoyama, K.

Benson, W. W.

Brackett, C. A.

C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
[CrossRef]

Dakss, M. L.

M. L. Dakss et al., Electron. Lett. 16, 421 (1980).
[CrossRef]

M. L. Dakss et al., Electron. Lett. 16, 463 (1980).
[CrossRef]

d'Auria, L.

L. d'Auria et al., Electron. Lett. 16, 322 (1980).
[CrossRef]

Hopland, S.

S. Hopland et al., in Technical Digest, Fourth ECOC, Genoa (1978), paper 9.3.

Horimatsu, T.

Kato, D.

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Khoe, G.

G. Khoe et al., Electron. Lett. 14, 666 (1978).
[CrossRef]

G. Khoe et al., in Technical Digest, Third ECOC, Munich (1977), p. 176.

Kurokawa, K.

K. Kurokawa et al., IEEE Trans. Microwave Theory Tech. MTT-23, 309 (1975).
[CrossRef]

Kuwahara, H.

H. Kuwahara et al., Proc. IEEE 67, 1456 (1979).
[CrossRef]

Maeda, M.

Odagiri, Y.

Y. Odagiri et al., Electron. Lett. 13, 395 (1977).
[CrossRef]

Ozeki, T.

T. Ozeki et al., Electron. Lett. 12, 607 (1976).
[CrossRef]

T. Ozeki et al., Electron. Lett. 12, 407 (1976).
[CrossRef]

Paek, U. C.

Pinnow, D. A.

Rich, T. C.

Sasaki, M.

Sugimoto, S.

S. Sugimoto et al., at Topical Meeting on Optical Fiber Transmission, 1975, Williamsburg, Va., paper WD1.

Sunak, H. R. D.

Timmermann, C. C.

Weaver, A. L.

Weidel, E.

E. Weidel, Opt. Quantum Electron. 8, 301 (1976).
[CrossRef]

Wittmann, J.

J. Wittmann, Electron. Lett. 11, 477 (1975).
[CrossRef]

Zampronio, M. A.

Appl. Opt.

Electron. Lett.

J. Wittmann, Electron. Lett. 11, 477 (1975).
[CrossRef]

Y. Odagiri et al., Electron. Lett. 13, 395 (1977).
[CrossRef]

L. d'Auria et al., Electron. Lett. 16, 322 (1980).
[CrossRef]

M. L. Dakss et al., Electron. Lett. 16, 421 (1980).
[CrossRef]

M. L. Dakss et al., Electron. Lett. 16, 463 (1980).
[CrossRef]

G. Khoe et al., Electron. Lett. 14, 666 (1978).
[CrossRef]

T. Ozeki et al., Electron. Lett. 12, 607 (1976).
[CrossRef]

T. Ozeki et al., Electron. Lett. 12, 407 (1976).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Kurokawa et al., IEEE Trans. Microwave Theory Tech. MTT-23, 309 (1975).
[CrossRef]

J. Appl. Phys.

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
[CrossRef]

Opt. Quantum Electron.

E. Weidel, Opt. Quantum Electron. 8, 301 (1976).
[CrossRef]

Proc. IEEE

H. Kuwahara et al., Proc. IEEE 67, 1456 (1979).
[CrossRef]

Other

S. Sugimoto et al., at Topical Meeting on Optical Fiber Transmission, 1975, Williamsburg, Va., paper WD1.

S. Hopland et al., in Technical Digest, Fourth ECOC, Genoa (1978), paper 9.3.

G. Khoe et al., in Technical Digest, Third ECOC, Munich (1977), p. 176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical example of coupling a semiconductor laser to a multimode optical fiber having a hemispherical end.

Fig. 2
Fig. 2

Multimode fiber F2 with a hemispherical end formed with a microtorch, photographed in index-matching liquid. The core is composed of GeO2–SiO2, the cladding SiO2.

Fig. 3
Fig. 3

Multimode fiber F2 having a taper-with-hemisphere termination. Other details as for Fig. 2.

Fig. 4
Fig. 4

Typical example of coupling a semiconductor laser to a multimode optical fiber having a taper-with-hemisphere end.

Fig. 5
Fig. 5

Normalized power output vs axial displacement with coupling L2 → F3. Type of input end is the parameter.

Fig. 6
Fig. 6

Normalized power output vs lateral displacement with coupling L2→ F3. Type of input end is the parameter.

Tables (5)

Tables Icon

Table I Results of Launching Efficiency η Obtained with Fibers Having PE and HE; the Improvement Ratio is F

Tables Icon

Table II Comparison of the Launching Efficiencies Reported in the Literature using Semiconductor Lasers and Multimode Fibers Having Plane Ends and Hemispherical Ends

Tables Icon

Table III Results of Launching Efficiency η Obtained with Fibers having PE and TE. F is the Improvement Ratio

Tables Icon

Table IV Comparison of Results, Previously Published and our Work, Obtained when Coupling Semiconductor asers to Multimode Fibers Having TE

Tables Icon

Table V Comparison of Coupling Efficiencies Obtained when Launching Light from Semiconductor Lasers into Multimode Fibers Having PE, HE, and TE

Metrics