Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Economou, Phys. Rev. 187, 539 (1969).
    [CrossRef]
  2. R. H. Ritchie, Surf. Sci. 34, 1 (1973).
    [CrossRef]
  3. F. Abeles, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
    [CrossRef]
  4. W. H. Weber, S. L. McCarthy, Appl. Phys. Lett. 25, 396 (1974).
    [CrossRef]
  5. G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
    [CrossRef]
  6. D. Sarid, Phys. Rev. Lett. 27, 1927 (1981).
    [CrossRef]
  7. G. I. Stegeman, J. J. Burke, D. G. Hall, unpublished.
  8. R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
    [CrossRef]

1982 (2)

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
[CrossRef]

1981 (1)

D. Sarid, Phys. Rev. Lett. 27, 1927 (1981).
[CrossRef]

1974 (2)

F. Abeles, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

W. H. Weber, S. L. McCarthy, Appl. Phys. Lett. 25, 396 (1974).
[CrossRef]

1973 (1)

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

1969 (1)

E. N. Economou, Phys. Rev. 187, 539 (1969).
[CrossRef]

Abeles, F.

F. Abeles, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

Burke, J. J.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, unpublished.

Deck, R. T.

Economou, E. N.

E. N. Economou, Phys. Rev. 187, 539 (1969).
[CrossRef]

Hall, D. G.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, unpublished.

Lopez-Rios, T.

F. Abeles, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

McCarthy, S. L.

W. H. Weber, S. L. McCarthy, Appl. Phys. Lett. 25, 396 (1974).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

Sarid, D.

Stegeman, G. I.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, unpublished.

Weber, W. H.

W. H. Weber, S. L. McCarthy, Appl. Phys. Lett. 25, 396 (1974).
[CrossRef]

Appl. Phys. Lett. (2)

W. H. Weber, S. L. McCarthy, Appl. Phys. Lett. 25, 396 (1974).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

F. Abeles, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, Phys. Rev. 187, 539 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, Phys. Rev. Lett. 27, 1927 (1981).
[CrossRef]

Surf. Sci. (1)

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

Other (1)

G. I. Stegeman, J. J. Burke, D. G. Hall, unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry analyzed in this paper.

Fig. 2
Fig. 2

Dispersion in the real component of the wave vector βR vs silver film thickness for λ = 0.5 μm. The parameters for the various curves are nx = nz = 2.05 (upper solid line); nx = nx = 2.00 (lower solid line); nx = 2.05, nz = 2.00 (- - -); and nx = 2.00, nz = 2.05 (…).

Fig. 3
Fig. 3

Same as Fig. 2 with λ = 5.0 μm.

Fig. 4
Fig. 4

Dispersion in the imaginary component of the wave vector β1 vs silver film thickness for λ = 0.5 μm. The parameters for the various curves are nx = nz = 2.00 (solid line) and nx = nz = 2.05 (dashed line). The cases nx = 2.0, nz = 2.05 and nx = 2.05, nz = 2.00 lie between these two curves.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H = ½ j ̂ f ( z ) exp [ i ( ω t β x ) ] + c c ,
medium 1 : f ( z ) = S 2 S ̅ 1 exp ( S 1 z ) ,
medium 2 : f ( z ) = S 2 S ̅ 1 [ cos ( S 2 z ) + S ̅ 1 S 2 sin ( S 2 z ) ] ,
medium 3 : f ( z ) = S 2 S ̅ 1 [ cos ( S 2 h ) + S ̅ 1 S 2 sin ( S 2 h ) ] exp [ S 3 ( z h ) ] ,
E x = i ω 0 n x 2 H y z ,
E z = β ω 0 n z 2 H y .
= ( x ( n x 2 ) 0 0 0 y ( n y 2 ) 0 0 0 z ( n z 2 ) )
β 2 n z 1 2 S 1 2 n x 1 2 = ω 2 c 2 ,
S 2 2 = n 2 2 ω 2 c 2 β 2 ,
β 2 n z 2 2 S 2 2 n x 2 2 = ω 2 c 2 ,
tan ( S 2 h ) = S 2 ( S ̅ 1 + S ̅ 3 ) S 2 2 S ̅ 1 S ̅ 3 ,
β ( n x , n z ) = ω c n z [ n 2 2 ( n 2 2 n x 2 ) n 2 4 n x 2 n z 2 ] 1 / 2 ,
Δ β = | β ( n x , n z ) β ( n z , n z ) | 4 | n x n z | n x + n z [ β ( n z , n z ) n z k ] .

Metrics