Abstract

Techniques are described which allow simultaneous spectral and temporal measurements to be made with combined resolutions approaching that set by the limit ΔνΔt = 1. The basis of the measurement is the optical Kerr effect. The application to observations of scattered radiation from laser-produced plasmas is discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
    [CrossRef]
  2. D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
    [CrossRef]
  3. R. E. Turner, L. M. Goldman, Phys. Fluids 24, 184 (1981).
    [CrossRef]
  4. A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
    [CrossRef]
  5. N. H. Schiller, R. R. Alfano, Opt. Commun. 35, 4451 (1980).
    [CrossRef]
  6. A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
    [CrossRef]
  7. R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
    [CrossRef]
  8. N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
    [CrossRef]
  9. M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
    [CrossRef]
  10. M. A. Duguay, in Progress in Optics, Vol. 14, E. Wolf, Ed. (North-Holland, Amsterdam, 1976), p. 163 and references therein.
  11. E. P. Ippen, C. V. Shank, Appl. Phys. Lett. 26, 92 (1975).
    [CrossRef]
  12. T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
    [CrossRef]
  13. H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).
  14. H. A. Baldis, C. J. Walsh, R. Benesch, Appl. Opt. 21, 297 (1982).
    [CrossRef] [PubMed]
  15. Streak camera model Imacon 500, manufactured by John Hadland, Ltd., U.K.
  16. C. J. Walsh, H. A. Baldis, Phys. Rev. Lett. 48, 1483 (1981).
    [CrossRef]
  17. H. A. Baldis, C. J. Walsh, in Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (International Atomic Energy Agency, Vienna, 1983), paper IAEA-CN-41/B-1-1.
  18. D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
    [CrossRef]

1982 (1)

1981 (3)

C. J. Walsh, H. A. Baldis, Phys. Rev. Lett. 48, 1483 (1981).
[CrossRef]

R. E. Turner, L. M. Goldman, Phys. Fluids 24, 184 (1981).
[CrossRef]

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

1980 (2)

N. H. Schiller, R. R. Alfano, Opt. Commun. 35, 4451 (1980).
[CrossRef]

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

1979 (1)

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

1978 (1)

R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
[CrossRef]

1977 (1)

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

1975 (2)

E. P. Ippen, C. V. Shank, Appl. Phys. Lett. 26, 92 (1975).
[CrossRef]

D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
[CrossRef]

1974 (1)

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

1973 (2)

T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
[CrossRef]

H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).

1969 (1)

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

Alfano, R. R.

N. H. Schiller, R. R. Alfano, Opt. Commun. 35, 4451 (1980).
[CrossRef]

Baldis, H. A.

H. A. Baldis, C. J. Walsh, R. Benesch, Appl. Opt. 21, 297 (1982).
[CrossRef] [PubMed]

C. J. Walsh, H. A. Baldis, Phys. Rev. Lett. 48, 1483 (1981).
[CrossRef]

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

H. A. Baldis, C. J. Walsh, in Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (International Atomic Energy Agency, Vienna, 1983), paper IAEA-CN-41/B-1-1.

Baumhacker, H.

H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).

Benesch, R.

Burgess, T. J.

T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
[CrossRef]

Burnett, N. H.

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

Cole, A. J.

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Coleman, L. W.

T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
[CrossRef]

Corkum, P. B.

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

M. A. Duguay, in Progress in Optics, Vol. 14, E. Wolf, Ed. (North-Holland, Amsterdam, 1976), p. 163 and references therein.

Enright, G. D.

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

Evans, R. G.

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Fill, E.

H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).

Forslund, D. W.

D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
[CrossRef]

Goldman, L. M.

R. E. Turner, L. M. Goldman, Phys. Fluids 24, 184 (1981).
[CrossRef]

Gray, D. R.

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, Appl. Phys. Lett. 26, 92 (1975).
[CrossRef]

Kindel, J.

D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
[CrossRef]

Lindeman, E. L.

D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
[CrossRef]

Manheimer, W. M.

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

Massey, R. S.

R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
[CrossRef]

McLean, E. A.

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

McMahon, J. M.

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

Murdoch, J.

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Murdock, J.

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

Ng, A.

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

Offenberger, A. A.

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

Owen, T. C.

T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
[CrossRef]

Pietrzyk, Z. A.

R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
[CrossRef]

Pitt, L.

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

Richardson, M. C.

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

Ripin, B. H.

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

Salzman, D.

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

Schiller, N. H.

N. H. Schiller, R. R. Alfano, Opt. Commun. 35, 4451 (1980).
[CrossRef]

Schmid, W.

H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).

Scudder, D. W.

R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
[CrossRef]

Shank, C. V.

E. P. Ippen, C. V. Shank, Appl. Phys. Lett. 26, 92 (1975).
[CrossRef]

Sim, S. M. L.

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Stamper, J. A.

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

Toner, W. T.

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Turner, R. E.

R. E. Turner, L. M. Goldman, Phys. Fluids 24, 184 (1981).
[CrossRef]

Walsh, C. J.

H. A. Baldis, C. J. Walsh, R. Benesch, Appl. Opt. 21, 297 (1982).
[CrossRef] [PubMed]

C. J. Walsh, H. A. Baldis, Phys. Rev. Lett. 48, 1483 (1981).
[CrossRef]

H. A. Baldis, C. J. Walsh, in Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (International Atomic Energy Agency, Vienna, 1983), paper IAEA-CN-41/B-1-1.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

E. P. Ippen, C. V. Shank, Appl. Phys. Lett. 26, 92 (1975).
[CrossRef]

T. C. Owen, L. W. Coleman, T. J. Burgess, Appl. Phys. Lett. 22, 272 (1973).
[CrossRef]

J. Appl. Phys. (1)

N. H. Burnett, H. A. Baldis, G. D. Enright, M. C. Richardson, P. B. Corkum, J. Appl. Phys. 48, 3727 (1977).
[CrossRef]

Opt. Commun. (2)

A. J. Cole, J. Murdock, S. M. L. Sim, R. G. Evans, Opt. Commun. 36, 51 (1981).
[CrossRef]

N. H. Schiller, R. R. Alfano, Opt. Commun. 35, 4451 (1980).
[CrossRef]

Phys. Fluids (3)

R. E. Turner, L. M. Goldman, Phys. Fluids 24, 184 (1981).
[CrossRef]

R. S. Massey, Z. A. Pietrzyk, D. W. Scudder, Phys. Fluids 21, 396 (1978).
[CrossRef]

D. W. Forslund, J. Kindel, E. L. Lindeman, Phys. Fluids 18, 1002 (1975).
[CrossRef]

Phys. Lett. (1)

H. Baumhacker, E. Fill, W. Schmid, Phys. Lett. A44, 3 (1973).

Phys. Rev. Lett. (3)

C. J. Walsh, H. A. Baldis, Phys. Rev. Lett. 48, 1483 (1981).
[CrossRef]

A. Ng, L. Pitt, D. Salzman, A. A. Offenberger, Phys. Rev. Lett. 42, 307 (1979).
[CrossRef]

B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer, J. A. Stamper, Phys. Rev. Lett. 33, 634 (1974).
[CrossRef]

Plasma Phys. (1)

D. R. Gray, J. Murdoch, S. M. L. Sim, A. J. Cole, R. G. Evans, W. T. Toner, Plasma Phys. 22, 967 (1980).
[CrossRef]

Other (3)

M. A. Duguay, in Progress in Optics, Vol. 14, E. Wolf, Ed. (North-Holland, Amsterdam, 1976), p. 163 and references therein.

H. A. Baldis, C. J. Walsh, in Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (International Atomic Energy Agency, Vienna, 1983), paper IAEA-CN-41/B-1-1.

Streak camera model Imacon 500, manufactured by John Hadland, Ltd., U.K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the experimental apparatus. The 0.53-μm probe is a collimated beam; the IR radiation of ~10.6 μm is dispersed in a spectrograph and focused into the Kerr cell, which consists of CS2 between NaCl windows. The 0.53- and 10.6-μm beams are collinear between the NaCl wedge and the analyzer. The rotator for the probe monitor is discussed in the text.

Fig. 2
Fig. 2

Polaroid photograph of the time-resolved CO2 laser output oscillating on two lines simultaneously. The probe monitor is at the top of the picture. The width of the signal due to the CO2 laser is related to the focal spot diameter of the IR radiation in the CS2 cell. Note that the time limitation given by Eq. (1) does not apply here since the diffraction grating was replaced by a mirror. Because the mode beating between the two rotational lines in the CO2 laser is well resolved, the time resolution is considerably better than 9 psec (see text).

Fig. 3
Fig. 3

(A) Streaked output of the CO2 laser on a slower sweep speed than in Fig. 2. None of the limitations on Δt discussed in the text applies here; instead of the temporal resolution is limited by the sweep speed of the streak camera. Note the modulation in the 0.53-μm probe. (B) The same laser pulse measured by a photon drag detector and a 7104 oscilloscope.

Fig. 4
Fig. 4

Comparison of the digitized data of Fig. 3. Note that the streak record of the CO2 laser in Fig. 3(A) (shown as a solid line here) has been normalized to the time varying monitor intensity. This procedure is complicated by the temporal variations in the probe; we plot only the normalized data points for which the probe was above a certain intensity. We have also scaled the results of Fig. 3 to be of equal intensity at the peak.

Fig. 5
Fig. 5

Time-resolved spectrum of the radiation close to 10.6 μm, which is directly backscattered from the plasma. The CO2 energy was ~8 J. The vertical coordinate is wavelength; the scale indicates the shift of the spectrum from the wavelength of the incident CO2 laser. The duration of the scattered signal is indicated. The probe monitor is at the top of the picture. Some leakage of the probe through the crossed polarizers can also be seen. Note the strong red shift with time of the spectrum.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ν Δ t = ( c / λ 2 ) Δ λ Δ t 1.
T ( t ) = sin 2 [ π L / λ p ) n 2 E 2 ¯ ( t ) ] ,
T ( t ) = sin 2 [ 5.0 × 10 - 9 I ( t ) ] ,
T ( x , t ) = sin 2 [ 0 L π z λ · n 2 · E 2 ¯ ( x , z , t ) d z ] E 2 ¯ ( x , t ) ,
Δ λ = 1 / 2 ( L / 2 ) · ( 1 / F d λ / d x ) ,
( 1 n d n d x ) - 1 300 μ m .

Metrics