Abstract

Scan loci of holographic disk scanners are investigated. Bow-free scanning conditions are derived for holographic disk scanners employing generalized holographic zone plates. Hologram disk design and a holographic technique to generate the generalized holographic zone plates are described. Experimentally, scanning with less than ±100-μm bow deviation is demonstrated for a 40-cm scan length by using this disk design method.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Pole, H. W. Werlich, R. J. Krusche, Appl. Opt. 17, 3294 (1978).
    [CrossRef] [PubMed]
  2. C. J. Kramer, in Technical Digest, Conference on Lasers and ElectroopticsOptical Society of America, Washington, D.C., 1981, paper THR1.
  3. L. Beiser, in Proceedings, Electro-Optical System Design Conference (Industrial & Scientific Management, Inc.Chicago, 1975), p. 333.
  4. O. Bryngdahl, W.-H. Lee, Appl. Opt. 15, 183 (1976).
    [CrossRef] [PubMed]
  5. C. S. Ih, Appl. Opt. 16, 2137 (1977).
    [CrossRef] [PubMed]
  6. C. J. Kramer, 1979 Annual Meeting of the Optical Society of America, Paper F13 (1979).
  7. G. T. Sincerbox, at ICO Conference on Optics in Four Dimensions (1980), Paper TH4-4.
  8. M. Young, J. Opt. Soc. Am. 62, 972 (1972).
    [CrossRef]
  9. Y. Ono, N. Nishida, Appl. Opt. 21, 4542 (1982).
    [CrossRef] [PubMed]
  10. M. Nakano, N. Nishida, Appl. Opt. 18, 3073 (1979).
    [CrossRef] [PubMed]

1982 (1)

1979 (2)

M. Nakano, N. Nishida, Appl. Opt. 18, 3073 (1979).
[CrossRef] [PubMed]

C. J. Kramer, 1979 Annual Meeting of the Optical Society of America, Paper F13 (1979).

1978 (1)

1977 (1)

1976 (1)

1972 (1)

Beiser, L.

L. Beiser, in Proceedings, Electro-Optical System Design Conference (Industrial & Scientific Management, Inc.Chicago, 1975), p. 333.

Bryngdahl, O.

Ih, C. S.

Kramer, C. J.

C. J. Kramer, 1979 Annual Meeting of the Optical Society of America, Paper F13 (1979).

C. J. Kramer, in Technical Digest, Conference on Lasers and ElectroopticsOptical Society of America, Washington, D.C., 1981, paper THR1.

Krusche, R. J.

Lee, W.-H.

Nakano, M.

Nishida, N.

Ono, Y.

Pole, R. V.

Sincerbox, G. T.

G. T. Sincerbox, at ICO Conference on Optics in Four Dimensions (1980), Paper TH4-4.

Werlich, H. W.

Young, M.

1979 Annual Meeting of the Optical Society of America (1)

C. J. Kramer, 1979 Annual Meeting of the Optical Society of America, Paper F13 (1979).

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

Other (3)

G. T. Sincerbox, at ICO Conference on Optics in Four Dimensions (1980), Paper TH4-4.

C. J. Kramer, in Technical Digest, Conference on Lasers and ElectroopticsOptical Society of America, Washington, D.C., 1981, paper THR1.

L. Beiser, in Proceedings, Electro-Optical System Design Conference (Industrial & Scientific Management, Inc.Chicago, 1975), p. 333.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Geometrical relation in diffracted light for IZP. Scan locus for linearly moving IZP is a straight line.

Fig. 2
Fig. 2

Geometrical relation in diffracted light for GZP. Scan locus for linearly moving GZP is a bowed line.

Fig. 3
Fig. 3

Geometry for disk configuration holographic scanner.

Fig. 4
Fig. 4

Calculated scan loci for various N values with R/F = 2 and (XcR)/F = 0.5.

Fig. 5
Fig. 5

Calculated bow compensated scan loci for N = 2 and R/F = 2 disk.

Fig. 6
Fig. 6

Calculated bow compensated scan loci for N = 3 and R/F = 2 disk.

Fig. 7
Fig. 7

Calculated bow compensated scan locus for N = 4 and R/F = 1.5 disk.

Fig. 8
Fig. 8

Bow compensation relation among (XcR)/F, R/F, and N.

Fig. 9
Fig. 9

Phase-generating process for N = 4 hologram. First step (a): two spherical waves interfere on H1 plane. Second step (b): reconstructed second-order diffraction wave from H1 interferes with plane wave P2 on the H2 plane. Third step (c): reconstructed H2 interferes with plane wave P4 on the H3 plane (disk plane).

Fig. 10
Fig. 10

Reconstruction geometry for laser beam scanner. A spherical wave divergent from point source S illuminates the hologram. The wave is diffracted on the hologram disk and focuses on the scanning plane. The straight scan line is generated by only the disk revolution.

Fig. 11
Fig. 11

Experimental setup for straight line scanning. The center spot on the screen is zero-order diffracted light, and the upper trace is scan locus.

Tables (1)

Tables Icon

Table I Disk Design Examples

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϕ G = ( π r 2 ) / ( λ F ) ,
ϕ N = 2 π λ k = 1 N ( r 2 + f k 2 - f k ) ,
K I = ϕ 1 r = 2 π λ · r r 2 + F 2 ,
K G = ϕ G r = 2 π λ · r F .
sin θ I = - r r 2 + F 2 ,
sin θ G = - r F .
r 2 = R 2 + X c 2 - 2 R · X c · cos θ R .
θ r = cos - 1 ( r 2 + X c 2 - R 2 2 r X c ) .
l = - F · tan θ N ,
sin θ N = - k = 1 N r r 2 + f k 2 .
X = l · cos ( θ R + θ r ) ,
Y = l · sin ( θ R + θ r ) .
( X c - R ) X c ( N 2 - 1 ) ( F N ) 2 .
F 2 = F 1 λ 1 / λ 2 ,
( X c - R ) X c [ ( N λ 2 / λ 1 ) 2 - 1 ] ( F N ) 2 ,
M = b ( 0 ) / F ,
M N 2 .

Metrics